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Plasmonics
Recently surface plasmons have 
attracted significant attention 
for a variety of exciting 
applications (e.g. 
metamaterials, “cloaking”, etc.)
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1. Surface 1. Surface plasmonplasmon
resonance for resonance for 

biosensingbiosensing



Surface Surface PlasmonPlasmon ResonanceResonance
When light strikes a conducting thin film it is 
possible to excite a surface plasmon polariton
i.e. charge oscillations in the metal that lead to 
evanescent surface electromagnetic waves 
propagating along a metal/dielectric interface. 

For the surface plasmon resonance to be 
excited, the incident light wave vector must 
match the surface plasmon resonance 
momentum. This is possible when:

The surface plasmon resonance is 
highly confined at the interface, and 
therefore is very sensitive to the 
dielectric optical properties.



ħkSP> ħk0

How can SPR be excited?



Application: How is SPR used in Application: How is SPR used in 
biobio--sensing?sensing?

A glass slide with a thin gold 
coating is chemically modified 
to be able to bind to specific 
bio-agents. The slide is 
mounted onto a prism.

Light passes through the 
prism and slide, reflects off 
the gold and passes back 
through the prism to a 
detector

Changes in reflectivity 
versus angle or wavelength 
give a signal that is 
proportional to the volume of 
bio-agent bound near the Au 
surface.





FundamentalsFundamentals
When surface plasmon resonance is excited, it radiates light backwards.

The electromagnetic field is 
highly enhanced at the metal/ 
dielectric surface interface
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The Au films thickness can be 
optimized to achieve full extinction 
in the reflected beam-> this is the 
optimum excitation condition for 
surface plasmon resonance 



2. Magneto2. Magneto--optical optical 
effects and surface effects and surface 
plasmonplasmon resonanceresonance



Fundamentals Fundamentals 

Since the 
electromagnetic field is 
strongly enhanced inside 
the Au film when the 
surface plasmon
resonance is excited, the 
introduction of a 
magnetic film can cause  
strong enhancement of 
its magneto-optical 
activity.

C. Hermann, 
PRB 63, 
235422 (2001)
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MagnetoMagneto--optical Kerr effectoptical Kerr effect
The light that is reflected from a magnetized surface The light that is reflected from a magnetized surface 
can change in both polarization and reflectivity.can change in both polarization and reflectivity.
This results from the offThis results from the off--diagonal components of the diagonal components of the 
dielectric tensor dielectric tensor εε..
MOKE can be further categorized by the direction of MOKE can be further categorized by the direction of 
the magnetization vector with respect to the the magnetization vector with respect to the 
reflecting surface and the plane of incidence.reflecting surface and the plane of incidence.



Transverse MOKETransverse MOKE
When the magnetization is perpendicular to the plane When the magnetization is perpendicular to the plane 
of incidence and parallel to the surface it is said to be of incidence and parallel to the surface it is said to be 
in the in the transversetransverse configuration.configuration.
In this geometry, the MOKE effect results in a In this geometry, the MOKE effect results in a 
change in reflectivity that is proportional to the change in reflectivity that is proportional to the 
component of magnetization that is perpendicular to component of magnetization that is perpendicular to 
the plane of incidence and parallel to the surface.the plane of incidence and parallel to the surface.
Further, the surface Further, the surface plasmonplasmon is also affected:is also affected:

J. B. González-Díaz et al., PRB 76, 153402 (2007).



System studiedSystem studied

Au (20 nm)

Au (3 nm)
Co (2.5 - 6 nm)

Au-Co-Au tri-layer samples were grown 
on glass with DC sputtering. Accurate 
control of the growth rate allowed 
precise control of the layers thickness. 
Au and Co thickness were designed to 
achieve:

•Optimum excitation of the surface 
plasmon resonance 

•Maximum enhancement of the MO 
activity. 



PreparationPreparation
Preparation: sputtering deposition

Sputtering System

Base pressure 10-9 Torr
(UHV). 

Rheed, Quadrupole in-situ.
Substrate temperature:RT-

700ºC.
6 magnetron sputtering guns
Gas: Ar, etc...

Deposition rates (PAr=5.10-3

Torr)

Au→0.32 Å/s
Co→0.066 Å/s
Cr→0.13 Å/s
Ni→0.12 Å/s
Ag→1.03 Å/s

High purity and thickness control!



Characterization
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Custom SPR station



Custom SPR station



Au-Co-Au

glass
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The thickness of all the metallic layers was 
designed to achieve full extinction of the 
reflected intensity.
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The measured signals are normalized with respect to the incident excitation. 
When the surface plasmon is excited we observe ~ one order magnitude 
enhancement in the transverse magneto-optical Kerr signal.

Results (II)Results (II)



Combining the enhancement of the MO effect and the extinction of
the reflected beam, a remarkable enhancement of the relative field-
dependent variation of the reflectivity is obtained
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Reflectivity (R)Reflectivity (R) FieldField--dependent dependent 
∆∆R/RR/R
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Grown 3 samples with the Co film placed in three 
different positions

Co (2.8 nm)-Au (23 nm)
Au(11.5 nm)-Co (2.8 nm)-Au (11.5 nm)
Au(20 nm)-Co (2.8 nm)-Au (3 nm)

The Physics: The Physics: PlasmonPlasmon Excitation, Electric Field Excitation, Electric Field 
depth dependence and Magnetodepth dependence and Magneto--optical enhancementoptical enhancement
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The derivative of Rpp: does not evolve in the same manner as
the experimental ∆Rpp -> the changes observed in ∆Rpp, i.e. the magneto-
optical response, are not related to modification of the plasmon
excitation in the samples.
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Thus, the field enhancement due to SPP excitation enhances also the MOKE
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Simulations polar

Our simulations also  indicate dramatic enhancement of the polar Kerr rotation and
ellipticity.  We will investigate this experimentally. 



Au (9.5-10.5 nm)

Au (3 nm)
Co (2.8 nm)

•Adhesion of Au on glass is poor. Tri-layers are 
degraded when exposed to a water flux.

•Cr has been extensively used to improve the 
adhesion of Au on glass, but it is a highly 
absorptive metal and therefore it broadens the 
surface plasmon resonance peak. 

•At present time the common belief has been that 
the introduction of Cr layers decreases the 
sensitivity of these kind of sensors. 

•We have demonstrated that this is not true.

Adhesion issues: Cr-Au-Co-Au

Cr (3 nm)

In order to explore the material for a possible bio-sensing application 
there are additional concerns.
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The thickness of the layers was once more designed to 
achieve the full extinction of the reflected intensity

Results: Cr-Au-Co-Au



Transverse Kerr magneto-optical signal

•A small decrease in the normalized signal is observed 
due to increased absorption in the Cr buffer layer

Results: Cr-Au-Co-Au

42 45 48

0

2

R
 (H

)-
R

 (0
) (

‰
)

incidence angle (deg)

∆Rpp Cr 3 nm-Au 10.5 nm-Co 2.8 nm-Au 3 nm
∆Rpp Cr 3 nm-Au 9.5 nm-Co 2.8 nm-Au 3 nm
∆Rpp Cr 3 nm-Au 9 nm-Co 2.8 nm-Au 3 nm

40 45 50
-2

-1

0

1

2

3

4

 

 

R
 (H

)-
R

 (0
) (

‰
 )

incidence angle (deg)

 6    nm Co
 5    nm Co
 4    nm Co
 3    nm Co
 2.5 nm Co

Recall transverse Kerr 
effect Without Cr buffer 
layer



Yet, combining the enhancement of the MO effect and the extinction of the 
reflected beam, again a remarkable enhancement of the relative variation of 
the reflectivity is obtained.
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Sensitivity
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SPR →3,900 % RIU-1

J. Homola et al. Sens. and Act. 
54, 3 (1999).



Detection limitDetection limit

MO-SPR (Cr-Co-Cr-Au) →19,100 % RIU-1

B. Sepúlveda et al. Opt. Letters 31, 1085 (2006).

SPR →3,900 % RIU-1

J. Homola et al. Sens. and Act. 54, 3 (1999).

280,000 % RIU-1 in air

170,800 % RIU-1 in water

703,000 % RIU-1 in air ∆nmin=1.42 x10-7 RIU

∆nmin=3.57 x 10-7 RIU

∆nmin=5.85 x 10-7 RIU

∆nmin=     5 x 10-6 RIU

∆nmin=     5 x 10-5 RIU



•A large enhancement of the magneto-optical response 
of Au-Co-Au trilayers with and without Cr buffer layer 
was obtained when the surface plasmon resonance was 
excited.

•Layer thickness was designed to achieve maximum 
extinction of the reflected beam.

•Combining both effects, a remarkable enhancement of 
the relative change in reflectivity (∆Rpp/Rpp) was 
obtained. 

•This feature can significantly improve the detection 
limit in sensors based on surface plasmon resonance.

ConclusionsConclusions



WORK IN PROGRESSWORK IN PROGRESS

We have achieved field modulated enhanced SPR in We have achieved field modulated enhanced SPR in 
trilayeredtrilayered AuAu--CoCo--Au samples and also with Au samples and also with trilayerstrilayers
grown on a Cr buffer layer. We are now testing these grown on a Cr buffer layer. We are now testing these 
sensors in liquids.sensors in liquids.

We are also investigating the use of diffraction We are also investigating the use of diffraction 
gratings gratings nanonano--patterned on the sensor surface to patterned on the sensor surface to 
couple the light to the surface couple the light to the surface plasmonsplasmons. This . This 
approach can eliminate constrains on the thickness of approach can eliminate constrains on the thickness of 
the films deposited and the kind of substrate used. the films deposited and the kind of substrate used. 



Diffraction gratings and Diffraction gratings and 
plasmonsplasmons



Nano-patterning

We have explored e-beam lithography 
to nanopattern magneto-plasmonic
materials with two goals in mind:

Use diffraction gratings for photons-plasmons
coupling
Explore localized enhancement of the 
electromagnetic field to further enhance the 
magneto-optical activity
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Au-Co-Au trilayer and 
Nano-patterned grating 
on top
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Deposition 
temperature RT, 
300 C, 600 C

•Alternative solution for the adherence issue

•Decrease Co Absorption

•Easier to prepare

Au 95% - Co 5 % → Au 40% - Co 60 % 

Au-Co nanocomposites
Sputtering codeposition of Au and Co
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Good adhesion to glass.

Au-Co nanocomposites: morphology
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Au-Co nanocomposites: MO-SPR

Au 20%- Co 80 %   grown @ 300 C
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The future
Investigate the metal-insulator 
transition in VO2 films grown on glass.
The films will be excited with IR laser 
radiation following Cavalleri’s work (PRL, 
2001)
We will then investigate the effect of 
this MI transition on plasmonic
structures deposited/patterned on 
VO2 films.


