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Abstract

Zooplankton serve as an important link in marine ecosystem food webs, with accurate yet
mathematically and computationally tractable models of zooplankton dynamics serving as an
important component of large system models. Current models of zooplankton dynamics may
have unnecessarily high dimensions resulting from tracking all stage classes or may lose accu-
racy due to neglected system characteristics such as non-predatory mortality from disease or
starvation. Here we construct a six stage class model and compare it to the thirteen stage class
model in Elliot and Tang (2011) of Acartia tonsa zooplankton in the Chesapeake Bay. We also
incorporate both predatory and non-predatory zooplankton mortality in order to further study
the mortality term. We use sensitivity and interval analysis to show that the six dimensional
model retains the essential features of the thirteen dimensional model and that both models
are most sensitive to error in the mortality term. Given the model sensitivity to error in the
mortality terms, a nonlinear approach to zooplankton modeling that separates non-predatory
mortality from predation by fish and intraguild predation is warranted to further improve current
zooplankton models.
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1 Background

Accurate projections of zooplankton abundances are important for modeling natural populations in
marine ecosystem food webs. In aquatic systems, understanding zooplankton dynamics is becoming
increasingly important since zooplankton are the main grazers of phytoplankton and help in recycling
materials. Zooplankton are also the main food source for several species higher in the food web, and
therefore are considered to be an indicator species [5]. Zooplankton grazing also has a major impact
on important ecological processes such as eutrophication and climate change. Because zooplankton
are a critical component of aquatic ecosystems, it is imperative that they are modeled as accurately
as possible.

∗These authors contributed equally to this work.
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While most zooplankton rates, such as egg production rates and developmental rates, have been
well-studied, mortality (both predatory and non-predatory) remains the least studied process [2].
Current models, such as Elliot and Tang’s linear stage class model [2], set the mortality rates as
constant or linear functions of temperature, which is often not biologically realistic as the mortality
rate can reach zero at low temperatures. While knowledge of mortality rates in zooplankton popu-
lations is incomplete, mortality terms often play a critical role in zooplankton models. Many models
use mortality as a “closure” or unconstrained term that is tuned to enforce stability in ecosystem
models or field studies [7].

Motivated by the Elliott and Tang model, we here study linear population models of the dominant
species of zooplankton in the Chesapeake Bay, Acartia tonsa, estimating the effects of dimension
and mortality. We build a lower dimensional model by aggregating stages with similar life history
traits using parameters from [2] and data on stage durations from [5]. The lower dimensional model
shows similar results to the Elliott and Tang model in sensitivity and interval analyses, indicating
that condensed models can be used in future analyses.

We also study the effects of mortality terms in the models, making an important distinction
between predatory and non-predatory rates. The field study in [2] showed that a large proportion of
total zooplankton biomass (approximately 30% in the Chesapeake Bay) consists of zooplankton car-
casses, an indication of non-predatory mortality [2]. This recent improvement in the differentiation
between live and dead zooplankton in samples can be used to improve estimates of predatory and
non-predatory mortality rates. We show that the models are highly sensitive to error in mortality
terms, suggesting that both improved model construction for mortality terms and increased data
collection may offer a large payoff in improved model accuracy. Further studying the importance
of the mortality term as well as the different types of mortality has the potential to improve our
understanding of zooplankton dynamics and population models. Improved zooplankton models will
also allow for more economically-relevant predictions of future coastal or oceanic ecosystems.

We begin by giving an overview of Elliott and Tang’s linear, thirteen stage class model in Sec-
tion 2. Section 3 describes our condensed, six stage class model that we construct through amalga-
mation of stages in the Elliott and Tang model and by using data to fit new rates. Sensitivity and
interval analyses of both the full and condensed models are in Section 4. In Section 5 we discuss our
results and briefly mention future research directions for this project.

2 Introduction to the Linear Zooplankton Model

Figure 1: A life cycle diagram for Elliott and Tang’s model [2]. The egg (red) represents the abun-
dance of eggs, Stages 2-7 (blue) represent the abundance in each of the naupliar classes, Stages 8-12
(green) represent the abundances in each of the copepodite classes, and stage thirteen (gray) indicates
the abundance of the adult class. The development rates are denoted by Di, where i is the stage class.
The mortality rates are denoted by mi and the birth rate by b.

Elliott and Tang’s model has thirteen stages of development [2]. The stage classes group naturally
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into six major stage groupings: eggs are stage class 1, nauplii I (NI) includes stage classes 2–4, nauplii
II (NII) includes 5–7, copepod I (CI) includes 8–10, copepod II (CII) includes 11–12, and copepod
adults (CA) are stage class 13. The stage classes are grouped in this way because the life history
traits are nearly the same for individuals in each stage class aggregate. The naupliar and copepodite
stages are the larval and adolescent stages of Acartia tonsa, respectively. The egg, nauplii, and
copepod classes are immature (or non-reproducing) classes, and each class is affected by a mortality
rate and a development rate. The mature class (adults) is also affected by mortality, but it is the
only class that can reproduce (see Figure 1 for the life cycle diagram).

The governing differential equations for Elliott and Tang’s model are
dAegg
dt

= 0.63 bA13 −DeggAegg −meggAegg,

dAi
dt

= Di−1Ai−1 −DiAi −miAi, where i = 2 to 12,

dA13

dt
= D12A12 −m13A13.

(1)

where where Ai is the abundance of individuals in stage i per cubic meter, t is time in days, b is the
birth rate, or egg production rate, given in units of eggs produced per individual per day (63% of
which survive), Di is the development rate into the next stage class, and mi is the mortality rate
for individuals in stage class i. The mortality, development, and reproduction rates are functions
of temperature, which in turn is a function of time. The mortality term not accounting for non-
predatory mortality is referred to as “uncorrected”, and the mortality term including non-predatory
mortality is referred to as “corrected”. See Appendix A and [2] for further details on the parameters
in this model as well as the temperature function T (t) = 16.133− 11.132 cos[2π(t+ 28.076)/365].

Coming from a fit to data, the total development time S, as given in [5], is a Belehradek’s function
of temperature T (◦C) given by

S(T ) = 5491.85(T + 0.96)−2.05. (2)

Note that this function gives the development time for individuals from nauplii I to adult, and does
not include the development time from egg to nauplii I. The stage duration of a class is the average
length of time an individual stays in that particular class, with the following functional form

segg(T ) = 489(T − 1.8)−2.05,

si(T ) = aiS(T )/11, i = 2, . . . , 12, (3)

where ai are mean deviations from the isochronal [5] given by

ai =


1.0533, for i = 2, 3, 4,
0.8124, for i = 5, 6, 7,
0.9226, for i = 8, 9, 10,
1.3213, for i = 11, 12.

(4)

This gives a very good approximate representation of the function S in (2) as a sum of functions si,
given by

S(T ) ≈
12∑
i=2

si(T ), (5)

with ||S −
∑
si||2 = 0.0781.

The general equation for the development rates in each class are thus

Di(T ) =
1

si(T )
. (6)

The mortality rate equation for the eggs has the following exponential functional form

megg(T ) = e0.0725T−1.112, (7)
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where T is temperature in ◦C. The remaining mortality rates for the nauplii, copepods, and adults
are all piecewise linear equations of the form

mi(T ) =

{
c1T − c2, if c1T − c2 > 0,

0, otherwise,
(8)

with constants c1, c2 > 0 that depend on the stage class and whether the mortality estimates are
corrected or uncorrected. The reproduction or birth rate b only directly affects the abundance of
the egg class. The egg production equation is given by

b(T ) = 50.9 · ((34− T )/9.22)3.95) · e3.95(T−24.78)/9.22. (9)

When the mortality term in this model does not account for non-predatory mortality, the pop-
ulation goes to extinction (see Figure 2a). However, when the mortality term does account for
non-predatory mortality, the population is sustained (see Figure 2b), matching more closely the exist-
ing data from the Baywide CBP Plankton Database mesozooplankton monitoring project (http://
www.chesapeakebay.net/data/downloads/baywide_cbp_plankton_database) from January 2000
to November 2002.
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(a) The full zooplankton model using uncorrected mor-
tality terms. The Day 0 abundances are 500 nauplii and
200 copepods per stage class. The total abundance of
the copepods and adults are plotted.
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(b) The full zooplankton model using corrected mortal-
ity terms. The Day 0 abundances are 500 nauplii and
200 copepods per stage class. The total abundance of
the copepods and adults are plotted.

Figure 2: Linear thirteen stage class model simulations. Data points are from the Baywide CBP
Plankton Database mesozooplankton monitoring project from January 2000 to November 2002.

3 Condensed Linear Model

We now reduce Elliott and Tang’s thirteen dimensional model to a condensed, six dimensional model
by combining stages with similar features. The six stage classes are egg, NI, NII, CI, CII, and adult
(CA). This is a natural reduction to make since development and mortality rates are the same for
each stage within each of these amalgamated states. In order to condense the model, new stage
durations are calculated for NI, NII, CI, and CII as follows. Following (3), we represent the new
stage durations by

sσ(T ) = aσS(T )/4, σ ∈ {NI,NII, CI, CII},
which shows we need to calculate the new mean deviations aσ from the isochronal. To do this, notice
that we need these new stage durations to sum to an approximation to S(T ), as in (3), giving

S(T ) ≈
12∑
i=2

si = sNI + sNII + sCI + sCII .
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By isolating portions of the sum in (3) that correspond to the appropriate condensed class, we have

sNI = aNIS(T )/4 ≡ (a2 + a3 + a4)S(T )/11,
sNII = aNIIS(T )/4 ≡ (a5 + a6 + a7)S(T )/11,
sCI = aCIS(T )/4 ≡ (a8 + a9 + a10)S(T )/11,
sCII = aCIIS(T )/4 ≡ (a11 + a12)S(T )/11.

Solving for aσ and using values of ai in (4) gives

aσ =


1.1491, for σ = NI,
0.8863, for σ = NII,
1.0064, for σ = CI,
0.9609, for σ = CII.

With these deviations and all other parameters for this condensed model the same as in Elliott
and Tang’s model [2], the zooplankton abundance blows up within one year. In order to correct for
this and to do a proper comparison of the condensed with the full model, we use uncertainty in the
estimates of the mortality terms and stage durations to constrain the relevant parameters for an
optimization procedure to fit the condensed model output to the full model output (see Appendix
C for details). The resulting optimized condensed stage durations are given by

âσ =


1.2764, for σ = NI,
0.7671, for σ = NII,
1.0811, for σ = CI,
1.1339, for σ = CII,

(10)

with optimized coefficients cj in modified corrected mortality terms mσ (of the functional form (8))
given by {

c1 = 0.0119, c2 = 0.1610, for σ ∈ {NI,NII},
c1 = 0.0461, c2 = 0.2775, for σ ∈ {CI,CII}. (11)

These new deviations and mortality terms are within the 99% Bonferroni corrected confidence bounds
for the parameters (see Figure 14).
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Full model
Condensed model

Figure 3: The full (solid line) and condensed (dashed line) zooplankton models using corrected
mortality terms. Mean deviations and mortality functions are given in Table 1 (full model) and
Eqs. (10)–(11) (condensed model). The Day 0 abundances are 1500 individuals in each of the two
naupliar stage classes, 500 individuals in each of the two copepod stage classes. The total abundance
of the copepods and adults are plotted.
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4 Analysis

We now analyze both the thirteen stage class, Elliott and Tang model and the six stage class,
condensed model, both with corrected mortality terms. We use sensitivity and what we call shift
interval analysis to determine which parameters influence the behavior of the models the most. We
will show that the behavior of the linear model changes minimally when condensing the stage classes,
indicating that the condensed model offers a good representation of the thirteen stage classes. We
also find both the full (Elliot and Tang) and condensed models to be most sensitive to changes
in mortality rates (as compared to all other system parameters). Considering that the mortality
terms are the least known, this analysis shows that more data and further studies of zooplankton
mortality should be conducted. For example, choosing corrected mortality rate functions from the
99% Bonferroni corrected confidence intervals in the full model, one can see either population crashes
or population explosions. (See Figure 8.) Further refinement of the mortality terms is needed to
make accurate predictions.

4.1 Eigenvalue Analysis

We now conduct an eigenvalue analysis on the Elliott and Tang model in order to determine at
which fixed temperatures the population grows rather than declines. Writing the coefficients of the
Elliott and Tang model (see Equation 1) in the 13× 13 matrix-form, we have

C =


−Degg −megg 0 · · · 0 0.63 b

Degg −D2 −m2 · · · 0 0
...

...
. . .

...
...

0 0 · · · D12 −m13

 (12)

If the maximum real eigenvalue of C is positive, then it is an indicator of growth of the population,
while a negative eigenvalue is an indicator of population decline.
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(a) The maximum real eigenvalue as a function of tem-
perature in both the full and condensed models.
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(b) The maximum real eigenvalue as a function of time
in both the full and condensed models.

Figure 4: Eigenvalue analysis with respect to temperature and time in both models.

Figure 4a shows the maximum real eigenvalues at each temperature computed in MATLAB
for both the Elliott and Tang model and the condensed model. The eigenvalue is positive at low
temperatures because the mortality of nauplii and copepods are zero at those temperatures (see
Figure 10a in Appendix A). This zero mortality rate leads to a positive maximum real eigenvalue
in temperatures less than 8◦C, which is problematic for this linear model since it is not likely that
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an organism’s mortality rate would ever reach zero. The maximum real eigenvalue then decreases
to below zero and remains negative until around 18◦C when the population begins to experience
growth again. The eigenvalue increases until a maximum is reached just after 25◦C and then begins
to decline as it approaches the maximum temperature in the system.

Figure 4b shows the maximum real eigenvalues of both models as a function of time. The
maximum real eigenvalue is positive at the beginning of the year because of 0 mortality rates at
low temperatures. The maximum real eigenvalue also has two minima that occur during the early
spring and late fall and obtains two maxima at the beginning and end of summer. In the middle of
summer, when the temperature maximum is reached, the eigenvalue has another local minimum. As
with the comparison of leading eigenvalues as functions of temperature, the analysis with respect to
time shows the two models to be similar. The slight differences in the computed leading eigenvalues
can be attributed to model approximation error in the condensing process.

4.2 Sensitivity Analysis

Sensitivity analysis on the full and condensed models helps to estimate the effect of measurement er-
ror in the model parameters. We compute sensitivities for both the full (Elliott and Tang) model and
the condensed model with respect to the development rates, the mortality rates, and the birth rate
using corrected mortality rates that include both predatory and non-predatory mortality. Sensitivity
estimates the change that occurs in the growth rate of the population when a parameter is perturbed
slightly [1]. In what follows, we estimate the effects of small changes to mortality, development, and
birth rates at fixed temperatures T , varying T over the feasible range of temperatures.

Sensitivity is more explicitly defined as the partial derivative of the maximum real eigenvalue
with respect to a specific parameter. Positive sensitivity indicates that a small increase in the
parameter leads to an increase in the maximum real eigenvalue, while negative sensitivity indicates
that a small increase in the parameter leads to a decrease in the eigenvalue. The magnitude of the
sensitivity indicates by how much the growth rate would increase or decrease given a unit of change
in the specific parameter [1]. The general formula for sensitivity is thus given by

Sλ(x) =
∂λ

∂x
,

where λ is the masimum real eigenvalue and x is the parameter that is being tested for sensitivity.
Sensitivity can be thought of as the linear multiplicative factor that maps a change in a parameter
to the change in the growth rate

∆λ ≈
[
∂λ

∂x

]
∆x,

which leads to
∂λ

∂x
≈ ∆λ

∆x
. (13)

We use MATLAB to approximate the sensitivities of the parameters in both models. For this
numerical approximation, we make a very small positive change (∆x = 0.001) to a specific parameter
at a specific temperature and then compute the new eigenvalue. We consider this to be a good
approximation of the partial derivative of the eigenvalue with respect to the parameter because
as we decrease the small change in the parameter, the graphs of the sensitivities do not change
significantly.

In the thirteen stage class model, the sensitivities of the stage classes line up with major group-
ings, given by: stages 2-4, which make up nauplii I; stages 5-7, which make up nauplii II; stages
8-10, which make up copepod I; and stages 11-12, which make up copepod II. Because the thirteen
stage classes fall into a natural grouping of six stages, the sensitivities of the full model can be easily
compared to the sensitivities of the condensed model.
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(a) The sensitivities of the full and condensed models
with respect to egg mortality as a function of tempera-
ture.
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(b) The sensitivities of the full and condensed models
with respect to nauplii mortality as a function of tem-
perature.

5 10 15 20 25
−0.25

−0.2

−0.15

−0.1

−0.05

0

Temperature (°C)

C
op

ep
od

 M
or

ta
lit

y 
S

en
si

tiv
ity

 

 

Copepod I Full
Copepod I Condensed
Copepod II Full
Copepod II Condensed

(c) The sensitivities of the full and condensed models
with respect to copepod mortality as a function of tem-
perature.
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(d) The sensitivities of the full and condensed models
with respect to adult mortality as a function of temper-
ature.

Figure 5: The sensitivities of the full and condensed models with respect to mortality rates.

The mortality sensitivities were found for each stage class for both the full and the condensed
model (see Figure 5). While sensitivity for the condensed model is simply ∂λ

∂mσ
, the reported sensi-

tivities of the full model are given by ∑
i∈Iσ

∂λ

∂mi
,

where Iσ is the set of stage classes amalgamated into class σ. This is the only fair comparison, as a
small change in mσ corresponds to a simultaneous change in all mi for each i ∈ Iσ.

The results show that the sensitivity with respect to mortality is always negative, as a slight
increase in the mortality rate should always lead to a decrease in the growth rate of the population
(the maximum real eigenvalue). It is most strongly negative for the adult and nauplii stage classes
in both models. When comparing the sensitivities of the full and condensed models, the biggest
differences can be seen in the egg, nauplii I, and copepod classes.



Proceedings of the Sixth Symposium on BEER, 2013

5 10 15 20 25
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Temperature (°C)
E

gg
 D

ev
el

op
m

en
t S

en
si

tiv
ity

 

 

Egg Full
Egg Condensed

(a) The sensitivities of the full and condensed models
with respect to egg development as a function of tem-
perature.
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(b) The sensitivities of the full and condensed models
with respect to nauplii development as a function of
temperature.
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(c) The sensitivities of the full and condensed models
with respect to copepod development as a function of
temperature.

Figure 6: The sensitivities of the full and condensed models with respect to development rates in both
models.

The development sensitivities were found for each stage class for both the full and the condensed
model (see Figure 6). Similar to the mortality case, while sensitivity of the condensed model is given
by ∂λ

∂Dσ
, the reported sensitivities of the full model are given by

|Iσ|
∑
i∈Iσ

∂λ

∂Di
,

where again Iσ is the indexing set of stage classes amalgamated into σ. This formula follows from
the chain rule as follows. For the condensed development rate, we have

Dσ =
1

sσ
≈ 1∑

i∈Iσ si
=

1

|Iσ|
Di, (14)

for each i ∈ Iσ and with |Iσ| the number of stage classes amalgamated into σ. (Note that si = sj
and, therefore, Di = Dj for all i, j ∈ Iσ.) The approximation in the above chain of equalities comes
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from the optimization procedure leading to modified stage durations for the condensed model. We
now have

∂λ

∂Dσ
=
∑
i∈Iσ

∂λ

∂Di

∂Di

∂Dσ
≈ |Iσ|

∑
i∈Iσ

∂λ

∂Di
.

The results in Figure 6 show that the sensitivity for the development is positive for eggs and
copepods and is negative for the nauplii from around 7−17◦C. Since the mortality rate of nauplii is
zero or near zero in this temperature range, developing into a copepod will increase those individuals’
mortality rates and therefore will negatively affect the growth rate of the population. The sensitivity
of the egg class in both the full and condensed models are slightly different but still comparable, and
these differences can be attributed to the model approximation error incurred during the condensing
process (see Figure 6a).

The sensitivities of the models with respect to birth rates appears sinusoidal over the possible
temperature range in the Chesapeake Bay (see Figure 7a). It is always positive, but it is largest at low
temperatures and smallest at high temperatures. The sensitivity range is very small meaning that
a unit change in the birth rate at a fixed temperature in the considered range does not change the
population’s growth rate a significant amount. Since the birth rate can approach 50 eggs produced
per day per individual (see Figure 10c), it is clear that the sensitivity of the birth rate should be
much smaller than that of the mortality and development rates, as an absolute change in the large
egg production rate would impact the growth rate less than the same absolute change would impact
the significantly smaller mortality and development rates (see Table 1 in Appendix A for parameter
values).
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Figure 7: The sensitivity of both the full and condensed models with respect to the birth rate as a
function of temperature.

The maximum sensitivity with respect to mortality of the adult class in both models has the
largest magnitude of any of the sensitivities of the parameters, with a maximum sensitivity of −0.45
at low temperatures. The sensitivities of copepod I development rate in the full model and nauplii
I mortality rate in the condensed model are the next largest in magnitude, reaching a maximum
magnitude of 0.3 and −0.4 respectively. As the adults are the only stage class that can reproduce,
it is logical that the models would be particularly sensitive to adult mortality rates. The models are
sensitive to nauplii mortality rates as well as these rates are zero or near zero at low temperatures
(see Figure 10a). In the next section we conduct further analysis which directly measures how far
we can shift a given parameter (at fixed temperature) while maintaining growth (positive leading
eigenvalue) in the model.
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4.3 Parameter Shift Analysis

We now compute the largest distance, what we call the shift distance, that a parameter may be shifted
while maintaining growth of the population. That is, for a parameter with value x we compute the
maximal shift distance ε ≥ 0 so that using a new, “shifted” parameter value x̂ ∈ [x − ε, x + ε],
the largest real eigenvalue for the model remains positive. As in the sensitivity analysis section,
we treat the mortality rates (development rates) in stage classes Iσ of the full model as the same
parameter, where σ corresponds to a condensed class. Thus, a parameter shift in a mortality rate
(development rate) for a condensed class σ will be compared with a parameter shift in all mortality
rates (development rates) of the corresponding full model classes in Iσ. Also note that, due to
equation (14), there will be an expected multiplicative factor of |Iσ| difference in the results from
parameter shift analysis on the development rates between the full and condensed models. Any
other difference can be attributed to the approximation scheme.

This analysis will give an indication of how precise we need to be when we measure certain
parameters, and it shows that most of the parameters, and the mortality parameter in particular,
cannot deviate much in this model without causing the model to predict a population crash (at
fixed temperature). We numerically calculate the maximum possible ε for each parameter at fixed
temperatures within the feasible range of temperatures. For the mortality rates (development/birth
rates) we calculate the maximum mortality rate (minimum development/birth rate) for each stage
class that still yields population growth. As only one parameter is changed at a time, these maximal
shift distance values are computed assuming that all the other parameters in the model are accurate.
Further computation is required for a more complete understanding of the parameter space in which
parameters may be shifted simultaneously while maintaining overall population growth.

Figures 12e-f show that the maximal shift distance allowed for the mortality rate that will still
allow growth is the smallest for the adult class when compared with the other stage classes in both
the full and condensed models. This conclusion is in line with our previous result that the adult
mortality term is the most sensitive mortality parameter and among the most sensitive of all the
parameters in the model (See Figure 5d). Figures 11 and 13 show the maximal shift distances for
the (minimum) birth rates and development rates at different temperatures, respectively. The birth
term, which we found was by far the least sensitive parameter in the model (see Figure 7), also
allows the largest shift distance. At certain temperatures, the maximal shift distance allowed for the
birth term is more than 25. The maximal shift distances for the development terms are the same
magnitude as those for the mortality terms (see interval analysis figures in Appendix B).

While calculating the maximal shift distances corresponds to analyzing error in absolute terms
rather than relative terms, looking at how large these shifts can be gives us an indication of how
precise our tools need to be when we measure these parameters.

4.4 Mortality Confidence Bounds and Cumulative Effects

The previous techniques of sensitivity and parameter shift analysis measure how changes in the
parameters affect the population growth rate at fixed temperatures. We now use the uncertainty in
the estimate of the linear mortality functions calculated in [2] to test what effect a more global (in
time) modification of mortality would have on the population dynamics. For the linear mortality
fits, there is a 99% Bonferroni corrected confidence interval associated with the linear regression
coefficients (see Figure 14 and Appendix C). The lower and upper bounds of the slope interval
are used to test the lower and upper bounds on mortality (simultaneously for both the nauplii and
copepods). With each slope, a new linear equation through the mean mortality and temperature
will be found. These bounds correspond to the points on the confidence ellipse at each end of the
major axis.

As expected, the zooplankton in the thirteen stage class model crashes with all uncorrected
mortalities (see Figure 8). The population persists, however, using the lower bound and estimate
of the slope for the corrected mortalities. Note, however, that the population becomes unbounded



Linear models of Acartia tonsa King et al.

using the mortality upper bound. Interestingly, the population crashes using the lower bound of the
slope for the corrected mortality. With upper bound mortalities in both uncorrected and corrected
versions, the model has higher abundances early in the year (at low temperatures), as the linear
mortality becomes negative and is set to be zero for a larger temperature range than for the models
using lower bound mortalities. Therefore, this follows from the inverse relationship between the slope
and intercept of the regression line. Like the previous analyses, this analysis indicates how sensitive
and important the mortality term is, as using the lower bound of the 99% Bonferroni corrected
confidence interval for the slope of the corrected mortality causes the population of zooplankton to
crash.
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(a) The full model with uncorrected mortality and lower
and upper mortality bounds. The Day 0 abundances are
500 nauplii and 200 copepods per stage class. The total
abundance of the copepods and adults are plotted.
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(b) The full model with corrected mortality and lower
and upper mortality bounds. The Day 0 abundances are
500 nauplii and 200 copepods per stage class. The total
abundance of the copepods and adults are plotted.

Figure 8: The linear thirteen stage class model with mortality bounds.

5 Discussion

Overall, the condensed six stage class model behaves similarly to the full thirteen stage class model
from Elliott and Tang. The condensed and the full models have similar sensitivity and parameter
shift analyses. The differences between the two models is generally slight and can be attributed to
the model approximation error accrued during the condensing process, especially for the copepod
classes which are associated with the most error in the condensed model (see Section 3). Since the
condensed model behaves similarly to the full model in both overall fit to time-series data (due to
simulations of the two models being close) and expected dynamics under small perturbations of
parameters, larger end-to-end models incorporating zooplankton as just one component in a food
web may take advantage of the lower dimension of this condensed model.

In addition to the good fit of the condensed model to the data, the sensitivity analysis, parameter
shift analysis, and the mortality confidence bounds indicate that the models are most sensitive to
error in the mortality term. Population crashes occur in both the full and the condensed models
at corrected mortality rates within the confidence region determined by the data. In fact, even the
highest resolution (thirteen stage) model with relatively low (uncorrected) mortality rates within the
confidence region shows population crashes. These results suggest the importance of accounting for
non-predatory mortality and indicate that better estimates for mortality are desired. This outcome
is significant because mortality is the least studied rate and has not been as precisely measured in
previous studies, as compared with the birth rate and development rates. Further data collection and
including nonlinear terms in the model may improve model accuracy by separating non-predatory
and predatory mortality. One promising avenue is to study intraguild predation, in particular
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zooplankton cannibalism, which has been shown to account for up to 60% of total zooplankton
mortality [3].
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A Elliott and Tang Model Parameters

This appendix contains the equations and parameters used to run simulations of Elliott and Tang’s
thirteen-stage class model (Equation 1).

Symbol Value Source
Day in model (t) day 1 to 365
Temperature (T) ◦ C 16.133− 11.132·cos[2π(t+

28.076)/365]
[2]

Developmental stage (i) eggs (egg), nauplii (2-7),
copepods (8-12), adults (13)

Stage duration (segg) day 489(T − 1.8)−2.05 [6]
Stage duration (si) day (a · 5491.85/11) · (T + 0.96)−2.05 [5]
Mean deviation of stage dura-
tions from isochronal (a)

1.0533 for Nauplii I (2-4), 0.8124
for Nauplii II (5-7), 0.9226 for
Copepod I (8-10), 1.3213 for Cope-
pod II (11-12)

Derived from
Table 1 in [5]

Development rate (i =egg to 12) day−1 1/si
Egg production rate (b) day−1 50.9 · ((34− T )/9.22)3.95·

e(3.95·(T−24.78))/9.22
[4]

Mortality rate (i =egg) day−1 e0.0725T−1.112 [3]
Uncorrected mortality rate (i =
2 to 13)

day−1 0.0187T − 0.223 (i = 2 to 7),
0.0392T − 0.224 (i = 8 to 13)

[2]

Corrected mortality rate (i = 2
to 13)

day−1 0.0096T − 0.143 (i = 2 to 7),
0.0412T − 0.243 (i = 8 to 13)

[2]

Table 1: Parameter values and equations modified from Elliott and Tang [2].

The temperature function was derived from water temperature readings in the Chesapeake Bay.
The highest temperatures occur in mid-summer, between July and August. The temperature func-
tion varies between 5− 28◦C (see Figure 9).
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Figure 9: Temperature as a function of time, as given in Table 1.
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(b) The development rates in the thirteen stage class
model as functions of temperature.
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(c) The birth rate in the thirteen stage class model as a
function of temperature.

Figure 10: Mortality, development, and birth rates of the linear model as a function of temperature.

The only mortality rate that is nonlinear is the egg mortality rate, which increases exponentially
as temperature increases. The mortality rates for the nauplii, copepods, and adults increase linearly
as temperature increases. Because the mortality rates for the nauplii, copepods, and adults are
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linear, the mortality equations–especially for the nauplii, but also for the copepods–give mortality
rates that are less than zero at low temperatures. In these cases, mortality at those temperatures is
taken to be zero (see Figure 10a).

The stage duration of a class is the average length of time an individual stays in that particular
class. The development rate of a particular stage class is the rate at which individuals move from
that stage class to the next stage class. The development rates of all the stage classes increase
as temperature increases. The rate at which the development rates increases also increases with
temperature. As the nauplii II and copepods I classes have the lowest a values and the smallest
stage durations (see Table 1), they have the highest development rates (see Figure 10b). Each of
the mean deviation a values are calculated from Table 1 in [5] as follows. We will illustrate how to
derive a for Nauplii I, i.e. a2 = a3 = a4, and the others follow similarly. For each Nauplii I stage
class i, where i = 2, . . . , 4, and for four different temperatures Tj , j = 1, . . . , 4, there is a mean
measured stage duration given by δij (averaged over 2 replicates). We have

a2 = a3 = a4 =
1

12

4∑
i=2

4∑
j=1

δij
S(Tj)/11

, (15)

which, by definition, is the mean deviation from the isochronal S(T )/11, where 11 represents the
total number of stage classes.

The birth rate increases as temperature increases, and peaks around 25◦C before decreasing until
the maximum temperature is reached (see Figure 10c).

B Parameter Shift Analysis

Since the population is already in decline (the maximal real eigenvalue is negative) at low temper-
atures the maximal allowed parameter shift to maintain population growth is 0. Looking at Figure
4a, we can see that the eigenvalue is negative between 7 − 17◦C, which lines up with when all the
max mortalities are equal to the actual mortality rates in Figure 12. The maximal mortality rates,
however, initially spike at about 5 or 6◦C. This is because the eigenvalue is positive at the lowest
temperatures, which may be because the mortality of the nauplii and copepods is zero at those
temperatures.
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(a) The minimal birth rate in the full model that will
still allow growth.
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(b) The minimal birth rate in the condensed model that
will still allow population growth.

Figure 11: Parameter shift analysis of the birth term.
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(a) The maximal egg mortality rate in the full model
that will still allow population growth.
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(b) The maximal egg mortality rate in the condensed
model that will still allow population growth.
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(c) The maximal nauplii mortality rates in the full
model that will still allow population growth.

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Temperature (°C)

M
ax

im
um

 M
or

ta
lit

y 
R

at
e 

fo
r 

G
ro

w
th

 

 

Max Nauplii I Mortality
Max Nauplii II Mortality
Actual Nauplii Mortality

(d) The maximal nauplii mortality rates in the con-
densed model that will still allow population growth.
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(e) The maximal copepod and adult mortality rates in
the full model that will still allow population growth.
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Figure 12: Parameter shift analysis of the mortality terms.
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(a) The minimal egg development rate in the full model
that will still allow population growth.

5 10 15 20 25
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Temperature (°C)

M
in

im
um

 E
gg

 D
ev

el
op

m
en

t R
at

e 
fo

r 
G

ro
w

th

 

 

Min Egg Development
Actual Egg Development

(b) The minimal egg development rate in the condensed
model that will still allow population growth.
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(c) The minimal nauplii development rates in the full
model that will still allow population growth.
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(d) The minimal nauplii development rates in the con-
densed model that will still allow population growth.
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(e) The minimal copepod development rates in the full
model that will still allow population growth.
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Figure 13: Parameter shift analysis of the development terms.
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C Data Analysis and Optimization

In order to compare the behavior of the condensed to the full model, optimization was performed
while varying the mortality terms and stage durations, leaving all other parameters fixed and equal
between the two models. Data were analyzed as follows:

• Mean deviations from the isochronal stage duration ai were calculated as in (15), along with
99% Bonferroni corrected confidence intervals (Figure 14(c,d)) and standard errors SEai .

• Zooplankton abundance data was taken from [2], which included live and dead counts for
NI, NII, CI, CII, and adults (CA). Live counts are denoted by Lkz , where 1 ≤ k ≤ 229 for
z ∈ {NI,NII} and 1 ≤ k ≤ 127 for z ∈ {CI,CII, CA}.

• For each k, a corrected nauplii mortality rate mk
N ≡ mk

NI = mk
NII was calculated by solving

the following nonlinear equation [9]

em
k
N ŝ

k
2 − 1

1− e−mkN ŝk5
=

LkNI

LkNII

,

where ŝki is similar to (3) and is given by

ŝki = 3αki S(T )/11, i = 2, 5,

with random variable αki drawn from a non-standardized t-distribution with 23 degrees of
freedom, location ai and scale SEai . In other words, the αki are drawn from the sampling
distribution for ai and account for the uncertainty in the estimate of the mean deviations.
Linear regression was then performed on the resulting mk

N , arriving at the linear functional
form given in (8), with 99% Bonferroni corrected confidence region displayed in Figure 14(a).

• For each k, a corrected copepod mortality rates mk
C ≡ mk

CI = mk
CII = mk

CA was calculated
by solving the following nonlinear equation [9]

mk
C =

ln
(

1 +
LkCII

LkCA

)
ŝk11

,

where ŝk11 is similar to (3) and is given by

ŝk11 = 2αk11S(T )/11,

with random variable αk11 drawn from a non-standardized t-distribution with 15 degrees of
freedom, location parameter a11 and scale SEa11 . Linear regression was then performed on
the resulting mk

C , arriving at the linear functional form given in (8), with 99% Bonferroni
corrected confidence region displayed in Figure 14(b).

• Optimization was performed using a Sequential Quadratic Programming (SQP) procedure
in MATLAB [8] with nonlinear constraints given by the ellipse corresponding to the 99%
Bonferroni corrected confidence regions for the mortality coefficients, and linear constraints
for the 99% Bonferroni corrected confidence intervals of the stage duration parameters (8 total
free parameters). The 99% Bonferroni corrected confidence regions/intervals were used to
arrive at simultaneous confidence bounds, corresponding to (100−1/6)% ≈ 99.83% confidence
regions/intervals. The correction of six comes from: one each for the confidence regions of the
two linear mortality fits, and one each for the confidence intervals for the four stage deviations.
(see Figure 14).
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Figure 14: 99% Bonferroni corrected confidence regions for the nauplii and copepod mortality terms
[(a) and (b), respectively] and the deviations from the isochronal stage durations for the nauplii and
copepods [(c) and (d), respectively]. Black x’s and red circles denote parameters used in the full and
condensed models, respectively.
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