Modeling vocal fold motion with a hydrodynamic
semicontinuum model

M. Drew LaMar
Department of Mathematics, University of Texas at Austin, Austin, Texas 78712

Yingyong Qi
Qualcomm Inc., 5775 Morehouse Drive, San Diego, California 92121

Jack Xin?
Department of Mathematics and TICAM, University of Texas at Austin, Austin, Texas 78712

(Received 24 October 2001; accepted for publication 1 April 2003

Vocal fold (VF) motion is a fundamental process in voice production, and is also a challenging
problem for numerical computation because the VF dynamics depend on nonlinear coupling of air
flow with the response of elastic chann€l&-), which undergo opening and closing, and induce
internal flow separation. The traditional modeling approach makes use of quasisteady flow
approximation or Bernoulli's law which ignores air compressibility, and is known to be invalid
during VF opening. A hydrodynamic semicontinuum system for VF motion is presented. The airflow
is modeled by a modified quasi-one-dimensional Euler system with coupling to VF velocity. The VF
is modeled by a lumped two mass system with a built-in geometric condition on flow separation.
The modified Euler system contains the Bernoulli’s law as a special case, and is derivable from the
two-dimensional compressible Navier—Stokes equations in the inviscid limit. The computational
domain contains also solid walls next to VEtexible wallg. It is shown numerically that several
salient features of VFs are captured, especially transients such as the double peaks of the driving
subglottal pressures at the opening and the closing stages of VF motion consistent with fully
resolved two-dimensional direct simulations, and experimental data. The system is much simpler to
compute than a VF model based on two-dimensional Navier—Stokes syste@00®Acoustical
Society of America.[DOI: 10.1121/1.1577547

PACS numbers: 43.70.Bk, 43.28.Ra, 43.28.Py, 43.40A%4

I. INTRODUCTION example, it was realizé€dand concludetf that Bernoulli's

Vocal folds(VF) are the source of the human voice, andIaW is not valid during one-fifth of the VF vibration cycle,

their motion is a fundamental process in speech productior‘ra.Spec'aIIy at the VF opening and closure. The compressibil-

Since VF motion is mechanical and results from the interaclty is ignored in the Bernoulli's law, especially in the sub-

tion of airflow and elastic response of VF, partial differential 9/0tt@! region just before the VFs. The compressibility is es-
equations(PDE9 can be written down from classical con- Sential for the pressure buildup to reopen the VFs.
tinuum mechanics based on our knowledge of VF structures 1€ other approach is direct numerical simulation of
and air flow characteristics. A model of VF motion is natu- channel fIO\;vs_and VF in the continuum. For example, Ali-
rally made of a certain form of compressible Navier—Stoked?0Ur €t al®’ simulated a two dimensional incompressible
equations coupled with an elastic system on VF deformationNavier—StokesNS) system and a finite element model of
In the past decade, much progress has been made ¥ cover and body. Extensive computation and coding are
modeling the elastic aspect of VF. There are by now a hierexpected to fully resolve the flows in the presence of moving
archy of elastic models for VF, from the two mass model ofboundaries, closures, and flow separation.
Ishizaka and FlanagdnBogaert® to 16 mass as well as the In this paper, we study an intermediate system consist-
continuum model of Titze and co-workets. However, the ing of a modified quasi-one-dimensional compressible Euler
modeling of airflow or the fluid aspect of VF is less explored.equations for the air flows and a recent version of the two
There are broadly two types of approaches in treating thenass model on VE.The flow separation is accounted for
glottal flow. One is to combine the Bernoulli’s law in the using an empirical formula on the VF opening angle. The
bulk of the flow (quasisteady flow approximatipmvith ei-  model is semicontinuum in that the flow variables are spa-
ther a quasi-steady pressure recovery théoryan analytical ~ tially continuous, while VFs are approximated by two
approximation downstream of the flow separation péitR. massesdiscret¢. The modified quasi-one-dimensional Euler
Bernoulli’s law oversimplifies the flow in the sense that par-equations are extensions of those in the study of duct flows
tial derivatives in time are ignored, however, they are notin aerodynamics!~**with an additional coupling to the ve-
negligible for transient effects such as pressure peaks. Fagcity of channel boundaries. This is the only viscous effect.
It will be shown numerically that the modified Euler system
author to whom correspondence should be addressed; electronic mailS @ble to handle strong transient effects, such as rapid varia-
jxin@math.utexas.edu tion of subglottal pressures at VF opening and closing. Nu-
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FIG. 1. A sketch of the flow and the
two mass model. The computational
domain is[Xq,X,]. The channel width
is fixed atxy, and smoothly interpo-
lated to mass one ovgKg,X;]; Xs iS
the separation point for diverging glot-
tis.

x0 x1 Xs X2

merical simulation of the model is less technical and many  (Ap),+ (puA),=0, (2.2
salient features of VF dynamit&1%1>-17gre captured.

The rest of the paper is organized as follows. In Sec. |
the model equations are introduced, and related modeling
issues addre.ssed.'ln Sec. lll, numerical method, conver-  (puA)+(pu?A) = —(PA) +Ap+ puA, (2.2)
gence, and simulation results are discussed. It is shown nu- )
merically that model solutions recover several known VFP is the air pressure. _ o
characteristics, for example, the double VF inlet pressure ASSUming that the temperature is maintained as con-
peaks at VF opening and closure. The model robustness fant the airflow is isotherméf,and the equation of state is
shown by varying subglottal input pressure and plotting how  p=a?p, (2.3
air volume velocity changes as a function of time. The con- , ) .
clusion is in Sec. IV, followed by the acknowledgments. Ap-Wherea s the speed of sound. The cross section wilib a
pendix A contains a derivation of the modified quasi-one-PI€CEWise linear function i determined by the displace-
dimensional Euler equations. Appendix B shows a linea/Ments of the tVt‘Z’O massey{,y,), in the two-mass model
stability analysis on the existence of oscillation modes neapyStém(Bogaert, Ishizaka and Flanagan
flat fqld, to de_monstrate _t_he role of the poundary velocity My +ry1+Ki(Y1—Yo1) +KiaY1— Yo+ Y0120 =F1,
coupling term in the modified Euler equations. (2.4

1P is the air densityu is the air velocity.
' Reduced momentum equation,

MY+ 12Y5+Ka(Y2— Y02 +Kia Y2—Y1— Y012 =0,
Il. THE SEMICONTINUUM MODEL (2.5

Suppose the larynx is a two-dimensional channel with awhere F1=Lgffop dx, Lg the transverséto the flow di-
finite mass elastic wall of cross section widd{x,t). The  mension of VF, equal to 1 cny;’s are VF openings at loca-
VF is lumped into a sum of two masses connected by dionsx;’s, i=1, 2; Xs=X, if there is no flow separation, and
spring, and each mass is connected to the solid wall by a;=the location of flow separation if it occurs. The , r;,
spring and a damper, the common scenario in the two mads, i=1, 2, are mass density, damping and elastic spring

modell? see Fig. 1. The air flows from=x, to x=x,, and  constants. Mass ondower mass} is situated near the VF

is modeled by the modified quasi-one-dimensional Euler sysentrance, and mass twapper massis located towards the

tem. exit of the glottal region. Following Bogaettxs will be
Conservation of mass, estimated by an empirical formula on the degree of diver-
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gence of the VF. Our complete VF model is the coupled(ordinary differential equationsre still running even during
system(2.1)—(2.5). VF closure, and in due time the increased pressure reopens

The viscous effect in the flow produces the tepinA, VF.
from the no-slip boundary condition of the two-dimensional The two-mass model by Boga&ronsists 0f2.4)—(2.7)
flows, see derivation in Appendix A. Without this term, the along with the above elastic collision criterion. In Bogdert,
above system is quasi-one-dimensional Euler in gashe forcing term on mass orig, is calculated with the Ber-
dynamicst*~** The extra term introduces coupling to wall noulli’'s law in the open glottis case. In the closed glottis
velocity, and is critical in transferring energy from airflow case, air pressure is equal to the ambient pressure over
into the VF, as the Titze thealy predicted. Appendix B [xq,Xs]. The two mass parameters are as listed in the table.
shows that with this term, there exist oscillation modes near Our VF model system is solved as an initial boundary
flat fold under a threshold condition similar to the one invalue problem onxe[Xgy,X,]. The initial conditions are
Titze 1° For simplicity, we ignored other viscous effects. p(x,0)=0.14 Pa, the ambient air pressurejx,0)=0;

The two-mass model (2.4—(2.5 is a recent (y1,¥2)(0)=(Yo01.Yo2, the equilibrium two-mass position.
improvement of the original IF72 in that the flow separa- The inlet boundary conditions are p,u)(Xo,t)
tion point is not always at the VF exit, instead it depends on=(py(t),uy(t)), wherepy(t) is a smooth increasing func-
the glottal geometry. Flow separation basically refers to dion such thatpy(0)=0.14 Pa,py(0.1)=700 Pa;ug(t) is a
change of flow behavior from being attached to the VF covesmooth increasing function such thag(0)=0, ug(0.1)
via a viscous boundary layer to a developed free jet with=0.114 28%, a is the speed of sound. The outlet boundary
vortical structures and turbulent wake. Because of the vorticondition is (,,u,)(X,,t)=0. The advantage of such
cal buildup, pressure near the wall is typically low, and canNeumann-type boundary conditions is to help the flow to go
be approximated by setting it to zef@r ambient pressuf@as  out of the computational domain, and minimize numerical
done on mass two if2.5). In converging glottis, there is no boundary artifacts.
flow separation, however in diverging glottis, it occurs if the The major difference between our model and that of
diverging angle is large enough. It is expedient for our mod-Bogaert is that we do not make quasisteady approximation
eling purpose to adopt a working hypothesis supported byn the flow variables, instead we integrate the time-

experiments® dependent systert2.1)—(2.2). This turns out to be particu-
larly important for capturing transients near closure and re-
Vo ly;<1.I=X =X, (2.6) opening stages of VF motion. It is helpful to put the system

(2.1)—(2.2) into a rescaled form. Let=u/a, ais the speed
of sound. Then,
(X2—X1)Y1

Iy;>11=X =X+ ———,
Yalya st 10(y,—y1)

y=11ly;. (2.7 1
T 3 (AD)+ (PUA), =0,

Notice that the location of the flow separation is a variable 1 (2.8
depending on the diverging angle. It is worth pointing out a(va)tJr(pva)X:—(pA)X+AXp+vat/a,

that the assumptions made for deriving the reduced f|0V\INhere typicallyy = u/a~0.1, the Mach number. If we use
model are more accurate prior to the separation point. Aftef,, .ot o biant cmgms un,ia=35 cm/ms. 1 is a small
the flow separation point, the reduced flow model needs to tg ’

| d E | buti f the vi arameter. If we ignore the terms with we have exactly
properly corrected. For example, co.ntn ution of the viscou ernoulli’'s law for quasisteady flows. These seemingly small
boundary layers can be introduced in the model to calculat

: i ferms are essential especially during opening stage of VF,
the separatlon_ point more accurately than form(2e6)- afnd should be kept for an accurate time-dependent solution.
(2.7), and take into account the energy losses downstream o

the separation point. A formulation of such a treatment with
von Karman equations is given by Pelorsetal® For sim-  Ill. NUMERICAL METHOD AND SIMULATION
plicity of the model, we shall not pursue this task here, in-RESULTS
stead we rely ori2.6)—(2.7) as a simple way to incorporate For given VF shapei(x,t), the flow systenf2.1)—(2.2)
separation effects. As the pressure after separation point is of the form
not contributing a force to the upper masg5), modeling
error of ignoring viscous losses in the boundary layers is Uit (F(U))=G(U), @D
minimized within our model system. Viscous effects can bethe so-called conservation lai@ee Ref. 18 and references
neglected upstream of the separation point for vocal ffows.therein with lower order source terrs. The functionF is

We also adopt the elastic collisigstopping criteriont?  the flux function. We implemented a first-order finite differ-
when the two sides of VF approach each other and clos€nce method, where time marching is split into two steps. In
Wheny,’s are smaller than a critical leval., then VF is  the first step {(=nk—(n+3)k), we solve the conservation
considered closed, andn(,r; k) (i=1,2) are adjusted to law U+ (F(U)),=0 with explicit Lax—Friedrichs
closure valued? In this case, the flow equations are solved method;®
only overxe[Xg,X;], and in(2.4—(2.5 the pressure force P A . k . .
is adjusted td=; = Lgfiép dx. Due to constant input pressure ~ Yj T =5 (Uit U ) = 5 (F(U ) —F(Uf ),

po at Xo, pressure ak; builds up. The two mass ODE’s (3.2
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TABLE I. Two mass model parameters in cgs unit. 1 |

Ll

my 0.17 g
m, 0.03 g 2 A te0boms
X2— Xy 0.2 cm .
X1 Xo 0.05 cm 3 —/P .
kl,open 45 kdynes
k1 closed 180 kdynes

| 4 74 % b i%
Yo 0cm .
k2,open 8 kdynes
K2 closed 32 kdynes 5 -\ f r beibls
Yo,2 0.0 cm
K1z (2)5 kdynes 3 \T [ -
Yo,12 cm
Ye 0.001 cm .
A(Xo,) 2cm 7 I t238m
I1,0pen 17.5 dynedtm s
'1,closed 192.4 dynegtm 9 8 [ bah %
I'2,0pen 18.6 dynes(bm 9
I 2 closed 49.6 dynegtm s FIG. 3. A simulated VF vibration cycle, similar to the figure on p. 113 of

Sataloff (Ref. 21).

wherek andh are time step and spatial grid size. Henaust space grid sizé=0.25/(1x— 1), where the computational
be small enough to ensure stability of the difference schemgg,4in isx,— Xo=0.25 cm, nx the total number of spatial
and 'Fo keep the computed flow l/elocity positiygo back grid points,nx=80 (h=<0.003 165); time stek<10"". The
flow is allowed. In step two (0+32)k—(n+1)k), we up- fime " unit is ms, length unit cm, speed of soura

date the solution froth'”% to U"*! by implicitly integrat-  =35cm/ms. The two mass model parameters are listed in
ing ODEs: U;=G(U) in the flow equations, and the two- Table I. A convergence test of numerics is shown in the plot
mass equations(2.4—(2.5; where we apply central of the air volume velocity passing through the glottis as a
differencing in space and backward differencing in time. Infunction of time in Fig. 2. The numerical grid$
the first step,U is updated using VF shap& at timet =0.001572 3 x=160),k=dt=2.5x 10" are used for the
=nk; in the second step, the ODEs of the two-mass systemest of the runs.
and source terms are solved to update solutions rto ( Now we describe our numerical results, and compare
+1)k. We point out that when VF approach closure, thewith figures in the literature either from experimental mea-
ODE's in step two become rather stiff, and this is the mainsurements or model calculations. In Fig. 3, we show a cycle
reason to use implicit backward differencing in tiffe. of VF vibration, which resembles well the figure on p. 113 of
The numerical parameters used in our computation ar&ataloff’s Scientific Americararticle?:

014 T T T T T T I I I
- nx=80 :dt=1e-7
o = nx=160: dt=2.5¢-8
RN - - nx=320: dt=6.25e-9

0.2k ; . —— nx=640: di=1.5625e-9 ||
2 osf 4
%
L
.’g
[TH 0.08 T
>
; FIG. 2. The air volume velocity at VF exit, to show
5 convergence of numerical solutions under grid refine-
Fc: 0.06- 4 ment.
>
L]
E
e
g
3 0.04 b

0.02 4

0 | 1 | i 1 1 1 1 1
0 05 1 15 2 25 3 35 4 45 5

Time (ms)
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FIG. 4. Simulated VF air volume velociticm®/ms) vs
time at exit of VF from model2.1)—(2.5).

0.05F i

Air volume velocity at VF exit (cm3/ms)

Time (ms)

In Fig. 4, we show the computed air volume velocity atin Fig. 5, except that our second peak has a similar width as
the exit of VF, similar to Fig. 6, Fig. 7, Fig. 8 of Story and the first peak. Two main factors contribute to the difference.
Titze2 and Fig. 6 of Alipour and Scher@rNote that the One is that the experiments have measured contact pressure
pressure recovery downstream of the separation point is convhen VFs are closed, and air pressure when VFs are open.
sidered in the formet,and that a 2D incompressible NS Their intraglottal pressure has both components, while our
calculation is used on a numerical domain covering a coneomputed subglottal pressure is only air pressure. As a result,
siderable wake flow region beyond in the lattef (see Fig.  the second peak in experiments due to air-pressure’s gradual
4, p. 474. This comparison lends indirect support to the change is wider than the first which is mainly contact pres-
efficiency of our model treatment of VF flows. sure. The other is that the closure treatment of two mass

Figure 5 is the experimentally measured intraglottalmodel differs from the actual VF closure. Our subglottal
pressure on an excised canine larynx from Tiasee also pressure is also in qualitative agreement with the computed
Jiang and Titz¥), which showed the double pedktraglot-  subglottal air pressure in Fig. Sottom frame® which
tal) pressure structure, respectively, at VF opening and closshowed two peaks of nearly equal widths as well. Double
ing. Figure 6 is our computed subglottal pressure beforgeaks of intraglottal pressures have been computéth a
mass one. The double peaks are present and resemble the@sfee-mass body-cover model and considerations of experi-

mental conditions.

4 We also tested our model robustness under input pres-
‘ﬁ- sure variation. In Fig. 7, we show a plot of air volume ve-

31 e, F ?ﬁ locity vs time at VF exit for three subglottal pressuresgt
= 7! 700 Pa, 1400 Pa, 2100 Pa with other parameters the same.
g 21 ] We see that as subglottal pressures increase with other pa-
;Zi 71 L f/\ ’ rameters fixed, air volume velocity curves get higterthe
s ! peaks and steepefat the two sides This agrees very well
% . \ J\ [‘;‘ \ A with Fig. 2.14a), p. 78, of Steven$’ and is another support
& v U ' \/] for our model.

B 7‘ ‘7& ?= We extend the flow domain to 0.5 cm downstreanxof

;jﬁ 7 . (Fig. 2). Figure 8 shows the transglottal pressure as a func-

tion of time, calculated as the absolute difference between
the instantaneous subglottal and supraglottal pressure values.

Time (seconds) The first and second peaks correspond to the opening of the
FIG. 5. Experimentally measured intraglottal pressure on excised caminglmtIS at mass 1 and _2’ reSpeCtlveW’ while .the thwd_pt_aak
larynx, reproduced Fig. 8 on p. 426 of Tit¢Ref. 11) (with permission of corrgspopds t.O the closing of the glottis. Th? figure is S'm"ar
the author and the publisher to Fig. 5 in Alipour and Scheréras well as Fig. 9 of Austin

2> T T T T T T
0.010 0012 0014 0016 0018 0020 0022
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FIG. 6. The air pressure at VF inldtefore lower mass
versus time.
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and Titze?” which displays experimental data collected from dimensional Euler system and a recent two-mass nfodel.

human subjects. The flow part of the model is more accurate than a traditional
treatment with Bernoulli's law, and also much simpler
IV CONCLUDING REMARKS than a full two-dimensional Navier—Stokes system. We

demonstrated numerical convergence and that the model
In this paper, we introduced and computed a semiconsolutions are in qualitative agreement with known VF char-
tinuum VF model consisting of a modified quasi-one- acteristics.

0.25 T T T
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FIG. 8. Transglottal pressure through an extended do-
main, 0.5 cm pasx, in Fig. 1.
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00-1-0524. The boundary conditions orp(u) are as follows:

(1) on the upper and lower boundarigs- +A(x,t)/2, py
APPENDIX A: DERIVATION OF MODIFIED EULER =0, andu=(0,=Ay/2), the velocity no slip boundary
SYSTEM condition;

. . .~ (2) at the inlet,x=—L, p=pg, given subglottal pressure
We derive the fluid part of the model system assuming (ug,U) = (U1 0,U0), given input flow velocity. At the

that the fold varies in space and time/fss A(x,t). Consider exit (D,Ulyuz’)xzd, to help the waves go out of the do-
a two-dimensional slightly viscous subsonic air flow in a main freely.
channel with spatially temporally varying cross section in
two space dimensionsQ)o=Qo(t)={(x,y):xe[—-L,L]y We are only concerned with flows that are symmetric in
e[—A(X,)/2,A(x,1)/2]}, whereA(x,t) denotes the channel the vertical. For positive but small viscosity, the flows are
width, or cross sectional area as the third dimension is unitaminar in the interior ofQ), and form viscous boundary

form. The two-dimensional Navier—Stokes equations in dif-layers near the upper and lower edges. The vertically aver-

ferential form qre(BatcheIorz,:* p. 147 as follows. aged flow quantities are expected to be much less influenced
Conservation of mass, by the boundary layer behavior as long Agx,t) is much
N 1/
pt+ V- (pl)=0. (A1) larger thanO(u 9.

_ Let us assume that the flow variables obey
Conservation of momentum,

(pl)y=—V-(p(i®u))+div(a-n), (A2) lugyl<[ugyl,
whereo is the stress tensos;= (o) = —pd;; +d;;, and

divu
dij=2u &= 3 i

luzy|<|us,], away from boundaries ofl,

|Gy[>]t,], near the boundaries of, (A4)
1

€)= 2 (Ui x, T Ujx),

|pyl<|pxl, throughout Q.
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These are consistent with physical observations in the visg
cous boundary layer@atchelor’® p. 302, namely, there are  g; puy dV:J (Pul)th+J pudidV
. ) : . t Q) Q(tg)

large vertical velocity gradients, yet small pressure or density
gradients in the boundary layers. The boundary layers are of f
a0t

width O(u'?). Denote byp, uy, the vertical averages gf =

pula.ﬁds+f o1, dS
and u;. Note that the exterior normah=(—A,/2,1)/(1

20(t)

+AZA)Y2 i y=A/2, ﬁ=(—Ax/2,—1)/(1+A§/4)1’2 if y +pUs A X+ O(5X?). (A10)
=—A/2. .
. W Iculate the int Is dA10
Let a=Xx, b=x+6x, 6x<1, t slightly larger thant,. e calculate the integrals ¢A10) as

We have )

dat puldV (pusA) X+ O((6%)?)
V=t
- dVv=— J(t)dVv _
dt Jaw” dt Jay” © ~(p-UA)- X+ O((8x)?). (A11)

Using u;=0 on the upper and lower boundaries, a similar
- Q(to)PtJ(t)dV+ Q(to)thdV, (AS) " calculation agA8) gives

where J(t) is the Jacobian of volume change from a refer-
ence timet, to t. Since ()(t) is now a thin slice,J(t)
=A(t)/A(tg) for small 6x, andJ,= A(t)/A(ty). The second
integral in(A5) is

fmpulufﬁdS=<F-U%A>|§“*‘+O<5xM1’2>. (A12)

where the smallness ufly in the interior and small width of
boundary laye©(u'?) gives theO(u*?) for approximating
A us by u;-uj.

fg(to)thd pA(t )A(tO)&( A1) OX. (A6) Remark 6.1: Notice that for inviscid flows, we would

have an additional ternpu;A;5x, which would cancel the

third term on the right-hand side of (A10). As a result, the
. Au/A term would be absent from the momentum equation

|,pwav=] pave-| idds an @2

0 Let us continue to calculate

The first integral is simplified usingAl) as

We calculate the last integral 6A7) further as follows: o ox

L A2 A2 f _p51,jnjd5%_EA|§+6x+J’ PALdx
f pU-ndSZJ (—pul)(x,y,t)dy+f (puy) o *
a0 ~A2 ~A2

= —PA[" ™+ pA,dx+O((8%)?).
X+ X
X (X+ 5x,y,t)dy+f p-(0,A/2) Noticing that
X
ot 5 d11=2u(Upx— (U1 Uz )/3),  dip=2u(Ugy+Usy).
(A2, 1)dx+ L P It follows that
— 4 . 2uA;
-(0,—A/2)- (—AJ2,—1)dx d11=§MU1,x—K-
— OX
= pu, A|XT X4 7(pAt)|y:A/2 Thus the contribution from the left and right boundaries lo-
cated atx andx+ X is
OX X+ X
+ 2 o 2 — 4 2uA
2 (PAt)|y——A/2 O((ox)%) E jlrdllnl:AdllKJr 3A/~LU1><|X+&< 5 t .
! X
~(p-U A ¥ +pASX+O((5%)?),  (A8) (AL3)
Where we have used the sma”nessmf to approx|mate The Contribution from the uppel’ and |0WEI’ boundal’ies iS
ply—+az by p and pu; by p-u;. Combining (A5)—(A7),
(A8) W|th Z f 7+A/2d11n1 dS: _dllAX5X/2|y:A/2
dat P dV=(pAdx)+O((8x)?), (A9) —dpAOXI2]y = ppo
dividing by 6x and sending it to zero, we have :M(SXE O(ayﬁ)|y=tA,2. (A14)
(PA)i+ (p-UsA),=0, .
Similarly,
which is (2.1).
Next consideri=1 in the momentum equatiomg=X, J' dionsdS= xS Ol A15
b=x+ éx. We have similarly with(2.6), Z’ —epp 2P H ; (FyWly=-arz- (AL5)
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Sincedylily— +ap=0(x *?), the viscous flux from the T'\4+ (al + 2T uomi)A3+ (I'(B+ om?) + 2aT ugmi
boundary layers ar®(sxu?), much larger than the aver-
aged viscous terndx(4u/3)(Auq,)=0(6xu). We notice +p0y51+(1—1“u(2,)m2))\2+
that the vertically averaged quantities have little dependence
on the viscous boundary layers unleasis on the order u
O(u3. Hence the quantities from upper and lower edges in  — am?(Tu2— 1) + poys “(2ugim) + oo
(A14) and (A15), and that in(A12), should balance them- Yo
selves. Omitting them altogether, and combining remaining +[(B+ om2)(1—Tud)m?+ poyy X(—uZm2)]=0. (B8)
terms that involve only,, p in the bulk, we end up with

(after dividing by 6x and sending it to zejo We show the following proposition.
Proposition 7.1: If

poUs> a(poUo+T Bugyo), (B9)

4 _
+ ?M(Aulx)x—z,uAtXIS, (Al16) (B8) has a pair of pure imaginary solution=*i»n, n#0
real, implying the existence of a pair of oscillatory modes to
which gives the modified Eulef2.2) in the inviscid limit  the linearized system (B4) and (B5) of the forf @** 7)),

2T ugmi( B+ om?)

A

(p-UA) i+ (p- U ?A) = — (PA), + AP+ pUsA,

u—0. for real and nonzero numbers m ang
Proof: Let \=i% in (B8), wherey is real. The real and
APPENDIX B: OSCILLATION MODES NEAR FLAT imaginary parts give, respectively,
FOLD Po
. . - I'7y*+2r S—|T(om?+B)+m3(1-Tu3) + —|7?
We present a linear analysis of oscillation modes when g Uo7 (om™+ ) +m up) Yo g
flow system(2.1)—(2.3) is coupled with a continuous wave 5
modgl of VF instead_ of two-mass model. Our objectiye iSt0 4| —2Tuym(B+om?) — M}
simplify the calculation and understand the VF velocity cou- Yo
pling termpuA; . The wave equation is 2u2m2
+ m2(1-Tud) (om?+ g)— 2P0 =g (B10)
MYy = 0Yxx— aYy— BY+p+fny, (B1) 0 Yo
whereo represents the longitudinal tension,mass density, gnq
a the damping, ang@ the stiffness. The pressupeacts point-
. : _ . . u
wise on the foldy y(t,x)_ _ A(t,x)/2. The forcingf ,, main —al 7*—2aTugmy? + mza(l—l“u(z,)nJr oPo7 —0.
tains an equilibrium position.
Let us consider the constantequilibrium) state (B11)
(pu.p.y)=(po.Uo.Po.Yo), Up=>0, such that For 7#0, a#0, we have fromB11),
~BYotPo=Fm, Po=a%po, (B2 Uopo
and a nearby state=uy+U, p=po+P, p=po+p. Y=Yo I 7%+ 2T ugmy—m?(1-T'uj)— Vo %
+y, where the hat variables are small perturbations. The
linearized system is SO
(Yop+Ypo)i+ (poYol+ poUoy + UgYop)x=0, (B3) 7= —UgM=aym-+Ugpo/(Yoa), (B12
R . 1. ug. which is not equal to zero in case of minus sign¥%0).
UrF Uolht - Px=y Ve (B4 Now we regard the left-hand side 6811) as a continuous
R R R L function of m, call it F(m). For |[m|>1, n~(—ug—a)m,
MY = 0Yxx— aYt— By +p. (B5)  direct calculation shows
Eliminating the p,U,p) variables usingB3) and (B4) and Po
the equation of statp=a?p, we obtain(denotingl'=a"?): F(m)~— Wm2< 0.
0
Yol T 0+ 2T Ugdye+ (TUG—1) Gyl - (Vo= 0+ @Yy + BY) While for |m|<1,
=~ po[ (3¢ + Ugdx) 2y + Ug¥y]. (B6) Uop
~ ’ 0rF0
Seek a mode solution of the foryn=e'™ "M mreal, we end n~—1\ Ty a+ O(m),
up with the following algebraic equation of degree four for 0
Nl u u
; F(m)~ OPO(ﬂ—r —@>>o,
[TA2+ 2T ugmhi+ (1—Tud)m?]-[ N2+ om?+ a + 8] Iyoa | yoa Yo
UnD\ provided
= — poy3 N2+ 2ugimh — u2m?] — —2 (B7)
Yo UopPo Po
—>a| —+I'B], (B13)
or Yo Yo
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