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Vocal fold ~VF! motion is a fundamental process in voice production, and is also a challenging
problem for numerical computation because the VF dynamics depend on nonlinear coupling of air
flow with the response of elastic channels~VF!, which undergo opening and closing, and induce
internal flow separation. The traditional modeling approach makes use of quasisteady flow
approximation or Bernoulli’s law which ignores air compressibility, and is known to be invalid
during VF opening. A hydrodynamic semicontinuum system for VF motion is presented. The airflow
is modeled by a modified quasi-one-dimensional Euler system with coupling to VF velocity. The VF
is modeled by a lumped two mass system with a built-in geometric condition on flow separation.
The modified Euler system contains the Bernoulli’s law as a special case, and is derivable from the
two-dimensional compressible Navier–Stokes equations in the inviscid limit. The computational
domain contains also solid walls next to VFs~flexible walls!. It is shown numerically that several
salient features of VFs are captured, especially transients such as the double peaks of the driving
subglottal pressures at the opening and the closing stages of VF motion consistent with fully
resolved two-dimensional direct simulations, and experimental data. The system is much simpler to
compute than a VF model based on two-dimensional Navier–Stokes system. ©2003 Acoustical
Society of America.@DOI: 10.1121/1.1577547#

PACS numbers: 43.70.Bk, 43.28.Ra, 43.28.Py, 43.40.Ga@AL #
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I. INTRODUCTION

Vocal folds~VF! are the source of the human voice, a
their motion is a fundamental process in speech product
Since VF motion is mechanical and results from the inter
tion of airflow and elastic response of VF, partial different
equations~PDEs! can be written down from classical con
tinuum mechanics based on our knowledge of VF structu
and air flow characteristics. A model of VF motion is nat
rally made of a certain form of compressible Navier–Stok
equations coupled with an elastic system on VF deformat

In the past decade, much progress has been mad
modeling the elastic aspect of VF. There are by now a h
archy of elastic models for VF, from the two mass model
Ishizaka and Flanagan,1 Bogaert,2 to 16 mass as well as th
continuum model of Titze and co-workers.3–7 However, the
modeling of airflow or the fluid aspect of VF is less explore
There are broadly two types of approaches in treating
glottal flow. One is to combine the Bernoulli’s law in th
bulk of the flow ~quasisteady flow approximation! with ei-
ther a quasi-steady pressure recovery theory,1 or an analytical
approximation downstream of the flow separation point.2,3,8

Bernoulli’s law oversimplifies the flow in the sense that p
tial derivatives in time are ignored, however, they are
negligible for transient effects such as pressure peaks.

a!Author to whom correspondence should be addressed; electronic
jxin@math.utexas.edu
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example, it was realized9 and concluded10 that Bernoulli’s
law is not valid during one-fifth of the VF vibration cycle
especially at the VF opening and closure. The compress
ity is ignored in the Bernoulli’s law, especially in the sub
glottal region just before the VFs. The compressibility is e
sential for the pressure buildup to reopen the VFs.

The other approach is direct numerical simulation
channel flows and VF in the continuum. For example, A
pour et al.6,7 simulated a two dimensional incompressib
Navier–Stokes~NS! system and a finite element model
VF cover and body. Extensive computation and coding
expected to fully resolve the flows in the presence of mov
boundaries, closures, and flow separation.

In this paper, we study an intermediate system cons
ing of a modified quasi-one-dimensional compressible Eu
equations for the air flows and a recent version of the t
mass model on VF.2 The flow separation is accounted fo
using an empirical formula on the VF opening angle. T
model is semicontinuum in that the flow variables are s
tially continuous, while VFs are approximated by tw
masses~discrete!. The modified quasi-one-dimensional Eul
equations are extensions of those in the study of duct flo
in aerodynamics,11–14 with an additional coupling to the ve
locity of channel boundaries. This is the only viscous effe
It will be shown numerically that the modified Euler syste
is able to handle strong transient effects, such as rapid va
tion of subglottal pressures at VF opening and closing. N
il:
45555/10/$19.00 © 2003 Acoustical Society of America
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FIG. 1. A sketch of the flow and the
two mass model. The computationa
domain is@x0 ,x2#. The channel width
is fixed at x0 , and smoothly interpo-
lated to mass one over@x0 ,x1#; xs is
the separation point for diverging glot
tis.
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merical simulation of the model is less technical and ma
salient features of VF dynamics6,8,10,15–17are captured.

The rest of the paper is organized as follows. In Sec
the model equations are introduced, and related mode
issues addressed. In Sec. III, numerical method, con
gence, and simulation results are discussed. It is shown
merically that model solutions recover several known
characteristics, for example, the double VF inlet press
peaks at VF opening and closure. The model robustnes
shown by varying subglottal input pressure and plotting h
air volume velocity changes as a function of time. The co
clusion is in Sec. IV, followed by the acknowledgments. A
pendix A contains a derivation of the modified quasi-on
dimensional Euler equations. Appendix B shows a lin
stability analysis on the existence of oscillation modes n
flat fold, to demonstrate the role of the boundary veloc
coupling term in the modified Euler equations.

II. THE SEMICONTINUUM MODEL

Suppose the larynx is a two-dimensional channel wit
finite mass elastic wall of cross section widthA(x,t). The
VF is lumped into a sum of two masses connected b
spring, and each mass is connected to the solid wall b
spring and a damper, the common scenario in the two m
model,1,2 see Fig. 1. The air flows fromx5x0 to x5x2 , and
is modeled by the modified quasi-one-dimensional Euler s
tem.

Conservation of mass,
456 J. Acoust. Soc. Am., Vol. 114, No. 1, July 2003
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~Ar! t1~ruA!x50, ~2.1!

r is the air density,u is the air velocity.
Reduced momentum equation,

~ruA! t1~ru2A!x52~pA!x1Axp1ruAt , ~2.2!

p is the air pressure.
Assuming that the temperature is maintained as c

stant, the airflow is isothermal,18 and the equation of state i

p5a2r, ~2.3!

wherea is the speed of sound. The cross section widthA is a
piecewise linear function inx determined by the displace
ments of the two masses (y1 ,y2), in the two-mass mode
system~Bogaert,2 Ishizaka and Flanagan1!:

m1y191r 1y181k1~y12y0,1!1k12~y12y21y0,12!5F1 ,
~2.4!

m2y291r 2y281k2~y22y0,2!1k12~y22y12y0,12!50,
~2.5!

whereF15Lg*
2L
xs p dx, Lg the transverse~to the flow! di-

mension of VF, equal to 1 cm;yi ’s are VF openings at loca
tions xi ’s, i 51, 2; xs5x2 if there is no flow separation, an
xs5the location of flow separation if it occurs. Themi , r i ,
ki , i 51, 2, are mass density, damping and elastic spr
constants. Mass one~lower mass! is situated near the VF
entrance, and mass two~upper mass! is located towards the
exit of the glottal region. Following Bogaert,2 xs will be
estimated by an empirical formula on the degree of div
LaMar et al.: Modeling vocal fold motion
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gence of the VF. Our complete VF model is the coup
system~2.1!–~2.5!.

The viscous effect in the flow produces the termruAt

from the no-slip boundary condition of the two-dimension
flows, see derivation in Appendix A. Without this term, th
above system is quasi-one-dimensional Euler in
dynamics.11–14 The extra term introduces coupling to wa
velocity, and is critical in transferring energy from airflo
into the VF, as the Titze theory19 predicted. Appendix B
shows that with this term, there exist oscillation modes n
flat fold under a threshold condition similar to the one
Titze.19 For simplicity, we ignored other viscous effects.

The two-mass model ~2.4!–~2.5! is a recent
improvement2 of the original IF721 in that the flow separa
tion point is not always at the VF exit, instead it depends
the glottal geometry. Flow separation basically refers to
change of flow behavior from being attached to the VF co
via a viscous boundary layer to a developed free jet w
vortical structures and turbulent wake. Because of the vo
cal buildup, pressure near the wall is typically low, and c
be approximated by setting it to zero~or ambient pressure! as
done on mass two in~2.5!. In converging glottis, there is no
flow separation, however in diverging glottis, it occurs if t
diverging angle is large enough. It is expedient for our mo
eling purpose to adopt a working hypothesis supported
experiments2,8

y2 /y1,1.1⇒xs5x2 , ~2.6!

y2 /y1.1.1⇒xs5x11
~x22x1!y1

10~y22y1!
, ys51.1y1 . ~2.7!

Notice that the location of the flow separation is a varia
depending on the diverging angle. It is worth pointing o
that the assumptions made for deriving the reduced fl
model are more accurate prior to the separation point. A
the flow separation point, the reduced flow model needs to
properly corrected. For example, contribution of the visco
boundary layers can be introduced in the model to calcu
the separation point more accurately than formula~2.6!–
~2.7!, and take into account the energy losses downstream
the separation point. A formulation of such a treatment w
von Karman equations is given by Pelorsonet al.8 For sim-
plicity of the model, we shall not pursue this task here,
stead we rely on~2.6!–~2.7! as a simple way to incorporat
separation effects. As the pressure after separation poi
not contributing a force to the upper mass in~2.5!, modeling
error of ignoring viscous losses in the boundary layers
minimized within our model system. Viscous effects can
neglected upstream of the separation point for vocal flow8

We also adopt the elastic collision~stopping! criterion1,2

when the two sides of VF approach each other and clo
When yi ’s are smaller than a critical levelyc , then VF is
considered closed, and (mi ,r i ,ki) ( i 51,2) are adjusted to
closure values.1,2 In this case, the flow equations are solv
only overxP@x0 ,x1#, and in ~2.4!–~2.5! the pressure force
is adjusted toF15Lg*x0

x1p dx. Due to constant input pressur

p0 at x0 , pressure atx1 builds up. The two mass ODE’
J. Acoust. Soc. Am., Vol. 114, No. 1, July 2003
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~ordinary differential equations! are still running even during
VF closure, and in due time the increased pressure reop
VF.

The two-mass model by Bogaert2 consists of~2.4!–~2.7!
along with the above elastic collision criterion. In Bogaer2

the forcing term on mass oneF1 is calculated with the Ber-
noulli’s law in the open glottis case. In the closed glot
case, air pressure is equal to the ambient pressure
@x0 ,xs#. The two mass parameters are as listed in the ta

Our VF model system is solved as an initial bounda
value problem onxP@x0 ,x2#. The initial conditions are
p(x,0)50.14 Pa, the ambient air pressure;u(x,0)50;
(y1 ,y2)(0)5(y0,1,y0,2), the equilibrium two-mass position
The inlet boundary conditions are (p,u)(x0 ,t)
5(p0(t),u0(t)), wherep0(t) is a smooth increasing func
tion such thatp0(0)50.14 Pa,p0(0.1)5700 Pa;u0(t) is a
smooth increasing function such thatu0(0)50, u0(0.1)
50.114 285a, a is the speed of sound. The outlet bounda
condition is (px ,ux)(x2 ,t)50. The advantage of suc
Neumann-type boundary conditions is to help the flow to
out of the computational domain, and minimize numeric
boundary artifacts.

The major difference between our model and that
Bogaert2 is that we do not make quasisteady approximat
on the flow variables, instead we integrate the tim
dependent system~2.1!–~2.2!. This turns out to be particu
larly important for capturing transients near closure and
opening stages of VF motion. It is helpful to put the syste
~2.1!–~2.2! into a rescaled form. Letv5u/a, a is the speed
of sound. Then,

1

a
~Ap! t1~pvA!x50,

~2.8!1

a
~pvA! t1~pv2A!x52~pA!x1Axp1pvAt /a,

where typicallyv5u/a'0.1, the Mach number. If we us
the convenient cm g ms unit,a535 cm/ms, 1/a is a small
parameter. If we ignore the terms witha, we have exactly
Bernoulli’s law for quasisteady flows. These seemingly sm
terms are essential especially during opening stage of
and should be kept for an accurate time-dependent solu

III. NUMERICAL METHOD AND SIMULATION
RESULTS

For given VF shape,A(x,t), the flow system~2.1!–~2.2!
is of the form

Ut1~F~U !!x5G~U !, ~3.1!

the so-called conservation law~see Ref. 18 and reference
therein! with lower order source termG. The functionF is
the flux function. We implemented a first-order finite diffe
ence method, where time marching is split into two steps
the first step (t5nk→(n1 1

2)k), we solve the conservation
law Ut1(F(U))x50 with explicit Lax–Friedrichs
method,18

U j
n11/25

1

2
~U j 21

n 1U j 11
n !2

k

2h
~F~U j 11

n !2F~U j 21
n !!,

~3.2!
457LaMar et al.: Modeling vocal fold motion
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wherek andh are time step and spatial grid size. Herek must
be small enough to ensure stability of the difference sche
and to keep the computed flow velocity positive~no back
flow is allowed!. In step two ((n1 1

2)k→(n11)k), we up-

date the solution fromUn1
1
2 to Un11 by implicitly integrat-

ing ODEs: Ut5G(U) in the flow equations, and the two
mass equations~2.4!–~2.5!; where we apply centra
differencing in space and backward differencing in time.
the first step,U is updated using VF shapeA at time t
5nk; in the second step, the ODEs of the two-mass sys
and source terms are solved to update solutions ton
11)k. We point out that when VF approach closure, t
ODE’s in step two become rather stiff, and this is the m
reason to use implicit backward differencing in time.20

The numerical parameters used in our computation

TABLE I. Two mass model parameters in cgs unit.

m1 0.17 g
m2 0.03 g
x22x1 0.2 cm
x12x0 0.05 cm
k1,open 45 kdynes
k1,closed 180 kdynes
y0,1 0 cm
k2,open 8 kdynes
k2,closed 32 kdynes
y0,2 0.0 cm
k12 25 kdynes
y0,12 0 cm
yc 0.001 cm
A(x0 ,t) 2 cm
r 1,open 17.5 dynes/~cm s!
r 1,closed 192.4 dynes/~cm s!
r 2,open 18.6 dynes/~cm s!
r 2,closed 49.6 dynes/~cm s!
458 J. Acoust. Soc. Am., Vol. 114, No. 1, July 2003
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space grid sizeh50.25/(nx21), where the computationa
domain isx22x050.25 cm, nx the total number of spatia
grid points,nx>80 (h<0.003 165); time stepk<1027. The
time unit is ms, length unit cm, speed of sounda
535 cm/ms. The two mass model parameters are listed
Table I. A convergence test of numerics is shown in the p
of the air volume velocity passing through the glottis as
function of time in Fig. 2. The numerical gridsh
50.001 572 3 (nx5160), k5dt52.531028 are used for the
rest of the runs.

Now we describe our numerical results, and comp
with figures in the literature either from experimental me
surements or model calculations. In Fig. 3, we show a cy
of VF vibration, which resembles well the figure on p. 113
Sataloff’sScientific Americanarticle.21

FIG. 3. A simulated VF vibration cycle, similar to the figure on p. 113
Sataloff ~Ref. 21!.
e-

FIG. 2. The air volume velocity at VF exitx2 to show
convergence of numerical solutions under grid refin
ment.
LaMar et al.: Modeling vocal fold motion



FIG. 4. Simulated VF air volume velocity~cm3/ms! vs
time at exit of VF from model~2.1!–~2.5!.
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In Fig. 4, we show the computed air volume velocity
the exit of VF, similar to Fig. 6, Fig. 7, Fig. 8 of Story an
Titze,3 and Fig. 6 of Alipour and Scherer.6 Note that the
pressure recovery downstream of the separation point is
sidered in the former,3 and that a 2D incompressible N
calculation is used on a numerical domain covering a c
siderable wake flow region beyondx2 in the latter6 ~see Fig.
4, p. 474!. This comparison lends indirect support to t
efficiency of our model treatment of VF flows.

Figure 5 is the experimentally measured intraglot
pressure on an excised canine larynx from Titze15 ~see also
Jiang and Titze16!, which showed the double peak~intraglot-
tal! pressure structure, respectively, at VF opening and c
ing. Figure 6 is our computed subglottal pressure bef
mass one. The double peaks are present and resemble

FIG. 5. Experimentally measured intraglottal pressure on excised ca
larynx, reproduced Fig. 8 on p. 426 of Titze~Ref. 11! ~with permission of
the author and the publisher!.
J. Acoust. Soc. Am., Vol. 114, No. 1, July 2003
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in Fig. 5, except that our second peak has a similar width
the first peak. Two main factors contribute to the differen
One is that the experiments have measured contact pres
when VFs are closed, and air pressure when VFs are o
Their intraglottal pressure has both components, while
computed subglottal pressure is only air pressure. As a re
the second peak in experiments due to air-pressure’s gra
change is wider than the first which is mainly contact pr
sure. The other is that the closure treatment of two m
model differs from the actual VF closure. Our subglot
pressure is also in qualitative agreement with the compu
subglottal air pressure in Fig. 5~bottom frame!,6 which
showed two peaks of nearly equal widths as well. Dou
peaks of intraglottal pressures have been computed3 with a
three-mass body-cover model and considerations of exp
mental conditions.

We also tested our model robustness under input p
sure variation. In Fig. 7, we show a plot of air volume v
locity vs time at VF exit for three subglottal pressures atx0 :
700 Pa, 1400 Pa, 2100 Pa with other parameters the s
We see that as subglottal pressures increase with othe
rameters fixed, air volume velocity curves get higher~at the
peaks! and steeper~at the two sides!. This agrees very well
with Fig. 2.14~a!, p. 78, of Stevens,17 and is another suppor
for our model.

We extend the flow domain to 0.5 cm downstream ofx2

~Fig. 1!. Figure 8 shows the transglottal pressure as a fu
tion of time, calculated as the absolute difference betw
the instantaneous subglottal and supraglottal pressure va
The first and second peaks correspond to the opening o
glottis at mass 1 and 2, respectively, while the third pe
corresponds to the closing of the glottis. The figure is sim
to Fig. 5 in Alipour and Scherer,6 as well as Fig. 9 of Austin

ne
459LaMar et al.: Modeling vocal fold motion



FIG. 6. The air pressure at VF inlet~before lower mass!
versus time.
m
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and Titze,22 which displays experimental data collected fro
human subjects.

IV. CONCLUDING REMARKS

In this paper, we introduced and computed a semic
tinuum VF model consisting of a modified quasi-on
460 J. Acoust. Soc. Am., Vol. 114, No. 1, July 2003
-

dimensional Euler system and a recent two-mass mod2

The flow part of the model is more accurate than a traditio
treatment with Bernoulli’s law, and also much simpl
than a full two-dimensional Navier–Stokes system. W
demonstrated numerical convergence and that the m
solutions are in qualitative agreement with known VF ch
acteristics.
FIG. 7. The air volume velocity atx2 for three values
of the input subglottal pressures atx0 .
LaMar et al.: Modeling vocal fold motion
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FIG. 8. Transglottal pressure through an extended
main, 0.5 cm pastx2 in Fig. 1.
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APPENDIX A: DERIVATION OF MODIFIED EULER
SYSTEM

We derive the fluid part of the model system assum
that the fold varies in space and time asA5A(x,t). Consider
a two-dimensional slightly viscous subsonic air flow in
channel with spatially temporally varying cross section
two space dimensions,V05V0(t)5$(x,y):xP@2L,L#,y
P@2A(x,t)/2,A(x,t)/2#%, whereA(x,t) denotes the channe
width, or cross sectional area as the third dimension is u
form. The two-dimensional Navier–Stokes equations in d
ferential form are~Batchelor,23 p. 147! as follows.

Conservation of mass,

r t1¹•~ruW !50. ~A1!

Conservation of momentum,

~ruW ! t52¹•~r~uW ^ uW !!1div~s•nW !, ~A2!

wheres is the stress tensor,s5(s i j )52pd i j 1di j , and

di j 52mS ei j 2
div uW

3
d i j D ,

ei j 5
1
2 ~ui ,xj

1uj ,xi
!,
J. Acoust. Soc. Am., Vol. 114, No. 1, July 2003
-
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~x1 ,x2![~x,y!,

m is the fluid viscosity,V(t) is any volume element of the
form @uW 5(u1 ,u2)#

V~ t !5$~x,y!:xP@a,b#,@2L,L#,

yP@2A~x,t !/2,A~x,t !/2#%. ~A3!

The equation of state is either polytropic or isothermal.
The boundary conditions on (r,uW ) are as follows:

~1! on the upper and lower boundariesy56A(x,t)/2, ry

50, anduW 5(0,6At/2), the velocity no slip boundary
condition;

~2! at the inlet,x52L, p5p0 , given subglottal pressure
(u1 ,u2)5(u1,0,u2,0), given input flow velocity. At the
exit (p,u1 ,u2)x50, to help the waves go out of the do
main freely.

We are only concerned with flows that are symmetric
the vertical. For positive but small viscosity, the flows a
laminar in the interior ofV0 and form viscous boundary
layers near the upper and lower edges. The vertically a
aged flow quantities are expected to be much less influen
by the boundary layer behavior as long asA(x,t) is much
larger thanO(m1/2).

Let us assume that the flow variables obey

uu1,yu!uu1,xu,

uu2,yu!uu1,xu, away from boundaries ofV0 ,

uuW yu@uuW xu, near the boundaries ofV0 , ~A4!

uryu!urxu, throughout V0 .
461LaMar et al.: Modeling vocal fold motion
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These are consistent with physical observations in the
cous boundary layers~Batchelor,23 p. 302!, namely, there are
large vertical velocity gradients, yet small pressure or den
gradients in the boundary layers. The boundary layers ar
width O(m1/2). Denote byr̄, ū1 , the vertical averages ofr
and u1 . Note that the exterior normalnW 5(2Ax/2,1)/(1
1Ax

2/4)1/2 if y5A/2, nW 5(2Ax/2,21)/(11Ax
2/4)1/2 if y

52A/2.
Let a5x, b5x1dx, dx!1, t slightly larger thant0 .

We have

d

dt EV~ t !
r dV5

d

dt EV~ t0!
rJ~ t !dV

5E
V~ t0!

r tJ~ t !dV1E
V~ t0!

rJt dV, ~A5!

whereJ(t) is the Jacobian of volume change from a ref
ence time t0 to t. Since V(t) is now a thin slice,J(t)
5A(t)/A(t0) for smalldx, andJt5At(t)/A(t0). The second
integral in ~A5! is

E
V~ t0!

rJt dV5 r̄
At~ t !

A~ t0!
A~ t0!dx5 r̄At~ t !dx. ~A6!

The first integral is simplified using~A1! as

E
V~ t0!

r tJ~ t !dV5E
V~ t !

r t dV52E
]V~ t !

ruW •nW dS. ~A7!

We calculate the last integral of~A7! further as follows:

E
]V

ruW •nW ds5E
2A/2

A/2

~2ru1!~x,y,t !dy1E
2A/2

A/2

~ru1!

3~x1dx,y,t !dy1E
x

x1dx

r•~0,At/2!

•~2Ax/2,1!dx1E
x

x1dx

r

•~0,2At/2!•~2Ax/2,21!dx

5ru1Aux
x1dx1

dx

2
~rAt!uy5A/2

1
dx

2
~rAt!uy52A/21O~~dx!2!

'~r̄•ū1A!ux
x1dx1 r̄Atdx1O~~dx!2!, ~A8!

where we have used the smallness ofry to approximate
ruy56A/2 by r̄ and ru1 by r̄•u1. Combining ~A5!–~A7!,
~A8! with

d

dt EV
r dV5~ r̄Adx! t1O~~dx!2!, ~A9!

dividing by dx and sending it to zero, we have

~ r̄A! t1~ r̄•ū1A!x50,

which is ~2.1!.
Next consideri 51 in the momentum equation,a5x,

b5x1dx. We have similarly with~2.6!,
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d

dt EV~ t !
ru1 dV5E

V~ t !
~ru1! t dV1E

V~ t0!
ru1Jt dV

52E
]V~ t !

ru1uW •nW dS1E
]V~ t !

s1,j•nW j dS

1 r̄u1Atdx1O~dx2!. ~A10!

We calculate the integrals of~A10! as

d

dt EV
ru1 dV5~ru1A! tdx1O~~dx!2!

'~r̄•ūA! t•dx1O~~dx!2!. ~A11!

Using u150 on the upper and lower boundaries, a simi
calculation as~A8! gives

E
]V

ru1uW •nW dS5~ r̄•ū1
2A!ux

x1dx1O~dxm1/2!, ~A12!

where the smallness ofu1,y in the interior and small width of
boundary layerO(m1/2) gives theO(m1/2) for approximating
u1

2 by u1•u1.
Remark 6.1: Notice that for inviscid flows, we wou

have an additional termr̄ū1Atdx, which would cancel the
third term on the right-hand side of (A10). As a result, t
Atu/A term would be absent from the momentum equa
(2.2).

Let us continue to calculate

E
]V

2pd1,jnj dS'2 p̄Aux
x1dx1E

x

x1dx

pAx dx

52 p̄Aux
x1dx1 p̄Axdx1O~~dx!2!.

Noticing that

d1152m~u1,x2~u1,x1u2,y!/3!, d1252m~u1,y1u2,x!.

It follows that

d115
4

3
mū1,x2

2mAt

3A
.

Thus the contribution from the left and right boundaries
cated atx andx1dx is

(
l ,r

E
l ,r

d11n15Ad11ux
x1dx5

4

3
Amū1,xux

x1dx2
2mAt

3 U
x

x1dx

.

~A13!

The contribution from the upper and lower boundaries is

(
6

E
y56A/2

d11n1 dS52d11Axdx/2uy5A/2

2d11Axdx/2uy52A/2

5mdx(
6

O~]yuW !uy56A/2 . ~A14!

Similarly,

(
6

E
y56A/2

d12n2 dS5mdx(
6

O~]yuW !uy56A/2 . ~A15!
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Since]yuW uy56A/25O(m21/2), the viscous flux from the
boundary layers areO(dxm1/2), much larger than the aver
aged viscous termdx(4m/3)(Au1x)x5O(dxm). We notice
that the vertically averaged quantities have little depende
on the viscous boundary layers unlessA is on the order
O(m1/2). Hence the quantities from upper and lower edge
~A14! and ~A15!, and that in~A12!, should balance them
selves. Omitting them altogether, and combining remain
terms that involve onlyu1, r̄ in the bulk, we end up with
~after dividing bydx and sending it to zero!

~ r̄•u1A! t1~ r̄•u1
2A!x52~ p̄A!x1Axp̄1 r̄u1At

1
4m

3
~Au1x!x22mAtx/3, ~A16!

which gives the modified Euler~2.2! in the inviscid limit
m→0.

APPENDIX B: OSCILLATION MODES NEAR FLAT
FOLD

We present a linear analysis of oscillation modes wh
flow system~2.1!–~2.3! is coupled with a continuous wav
model of VF instead of two-mass model. Our objective is
simplify the calculation and understand the VF velocity co
pling termruAt . The wave equation is

mytt5syxx2ayt2by1p1 f m , ~B1!

wheres represents the longitudinal tension,m mass density,
a the damping, andb the stiffness. The pressurep acts point-
wise on the foldy5y(t,x)5A(t,x)/2. The forcingf m main-
tains an equilibrium position.

Let us consider the constant~equilibrium! state
(r,u,p,y)5(r0 ,u0 ,p0 ,y0), u0.0, such that

2by01p05 f m , p05a2r0 , ~B2!

and a nearby stateu5u01û, p5p01 p̂, r5r01 r̂, y5y0

1 ŷ, where the hat variables are small perturbations. T
linearized system is

~y0r̂1 ŷr0! t1~r0y0û1r0u0ŷ1u0y0r̂ !x50, ~B3!

ût1u0ûx1
1

r0
p̂x5

u0

y0
ŷt , ~B4!

mŷtt5s ŷxx2a ŷt2b ŷ1 p̂. ~B5!

Eliminating the (r̂,û,p̂) variables using~B3! and ~B4! and
the equation of statep5a2r, we obtain~denotingG[a22):

y0@G] tt12Gu0]xt1~Gu0
221!]xx#•~ ŷtt2s ŷxx1a ŷt1b ŷ!

52r0@~] t1u0]x!
2ŷ1u0ŷt#. ~B6!

Seek a mode solution of the formŷ5eimx1lt, m real, we end
up with the following algebraic equation of degree four f
l:

@Gl212Gu0ml i 1~12Gu0
2!m2#•@l21sm21al1b#

52r0y0
21@l212u0iml2u0

2m2#2
u0r0l

y0
, ~B7!

or
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Gl41~aG12Gu0mi!l31~G~b1sm2!12aGu0mi

1r0y0
211~12Gu0

2!m2!l21S 2Gu0mi~b1sm2!

2am2~Gu0
221!1r0y0

21~2u0im!1
u0r0

y0
Dl

1@~b1sm2!~12Gu0
2!m21r0y0

21~2u0
2m2!#50. ~B8!

We show the following proposition.
Proposition 7.1: If

r0u0
2.a~r0u01Gbu0y0!, ~B9!

(B8) has a pair of pure imaginary solutionl56 ih, hÞ0
real, implying the existence of a pair of oscillatory modes
the linearized system (B4) and (B5) of the form e6 i (mx1ht),
for real and nonzero numbers m andh.

Proof: Let l5 ih in ~B8!, whereh is real. The real and
imaginary parts give, respectively,

Gh412Gu0mh32FG~sm21b!1m2~12Gu0
2!1

r0

y0
Gh2

1F22Gu0m~b1sm2!2
2r0u0m

y0
Gh

1Fm2~12Gu0
2!~sm21b!2

2u0
2m2r0

y0
G50 ~B10!

and

2aGh322aGu0mh21m2a~12Gu0
2!h1

u0r0h

y0
50.

~B11!

For hÞ0, aÞ0, we have from~B11!,

Gh212Gu0mh2m2~12Gu0
2!2

u0r0

y0a
50,

so

h52u0m6aAm21u0r0 /~y0a!, ~B12!

which is not equal to zero in case of minus sign (u0.0).
Now we regard the left-hand side of~B11! as a continuous
function of m, call it F(m). For umu@1, h;(2u02a)m,
direct calculation shows

F~m!;2
r0

Gy0
m2,0.

While for umu!1,

h;2A u0r0

Gy0a
1O~m!,

F~m!;
u0r0

Gy0a S u0r0

y0a
2Gb2

r0

y0
D.0,

provided

u0r0

y0
.aS r0

y0
1Gb D , ~B13!
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holds, which is just~B9!. Under ~B9!, F(m)50 has a non-
zero real solution, hence an oscillatory mode solution ex
to ~B10! and ~B11!. Finally, noticing that equations~B10!
and ~B11! are invariant under the symmetry transfor
(h,m)→(2h,2m), we conclude that the oscillatory mode
exist as a pair.

Remark 7.1: Condition (B9) says that the fluid ener
must be large enough to overcome the fold damping due ta.
Without the termruAt in (2.2), the same calculation woul
show that F(m)52r0m2/(Gy0),0 for all m, implying non-
existence of oscillatory mode. Condition (B9) is similar
the threshold pressure in Titze’s wave model19 in the sense
that minimum energy (analogous to minimum lung pressu
is proportional to the fold damping coefficient and the p
phonatory half-width.
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