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1.  Introduction 
 
      Creating models of real-world networks, such as social and biological interactions, is a central task for 
understanding and measuring the behavior of these networks. A usual first step in this type of model 
creation is to construct a digraph with a given degree sequence. We examine the extreme case of digraph 
construction where for a given degree sequence there is exactly one digraph that can be created. 
      What follows is a brief introduction to the notation used in the paper. For notation not otherwise 
defined, see Diestel [1]. We let = ( , )G V E  be a digraph where E is a set of ordered pairs called arcs. If 
( , )v w E∈ , then we say w is an out-neighbor of v and v is an in-neighbor of w. We notate the out-degree of 
a vertex v V∈  by ( )Gd v+  and the in-degree as ( )Gd v− , suppressing the subscript when the underlying 
digraph is apparent from context. 
      Given a sequence 1 1= (( , ), , ( , ))n nα α α α α+ − + −

  of integer pairs we say that α  is digraphical if there is 
a digraph = ( , )G V E  with 1= { , , }nV v v  and ( ) =i id v α+ + , ( ) =i id v α− − . We call such G  a realization of 
α . An integer pair sequence α  is in positive lexicographical order if 1i iα α+ +

+≥  with 1i iα α− −
+≥  when 

1=i iα α+ +
+ . 

      We are interested in the degree sequences that have unique vertex labeled realizations and the digraphs 
that realize them. Theorem 1 in Sec. 2 presents several characterizations of this type of degree sequence 
and its realization. We then show these characterizations to be equivalent. One of the characterizations is 
previously unpublished, and allows for a much shorter proof of the equivalence of the two known 
characterizations as well as proving the final characterization which appears without proof in the literature. 
In Sec. 3, we use Theorem 1 to obtain a new short proof of the Fulkerson-Chen theorem on degree 
sequences of general digraphs. We end by presenting some applications in Sec. 4. 
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2.  Threshold Digraph Characterization 
 
      In the existing literature [2], the characterization of the unique realization of a degree sequence is in 
terms of forbidden configurations. The two forbidden configurations are the 2-switch and the induced 
directed 3-cycle. A 2-switch is a set of four vertices , , ,w x y z  so that ( , )w x  and ( , )y z  are arcs of G  and 
( , )w z , ( , )y x  are not. An induced directed 3-cycle is a set of three vertices , ,x y z  so that 
( , ), ( , ), ( , )x y y z z x  are arcs but there are no other arcs among the vertices. Replacement of the arcs in these 
configurations with the arcs that are not present yields another digraph with the same degrees, both in and 
out, so any degree sequence of a digraph with these configurations has multiple realizations. These 
configurations are pictured in Fig. 1. 
 

 
 
Fig. 1. A 2-switch (left) and an induced directed 3-cycle (right). Solid arcs must appear in the digraph and dashed arcs must not appear 
in the digraph. If an arc is not listed, then it may or may not be present. 
 
 
      Our main theorem shortens the existing proofs by showing the equivalence of our characterization 
(Condition 3 in Theorem 1) to known characterizations. 
 
Theorem 1. Let G  be a digraph and = [ ]ijA a  an adjacency matrix of G . Define 

=1
= n

i ijj
aα + ∑  and 

=1
= n

j iji
aα − ∑ . Suppose that the vertices 1, , nv v  of G  are ordered so that ( ) =i id v α+ + , ( ) =i id v α− −  and 

the degree sequence 1 1= (( , ), , ( , ))n nα α α α α+ − + −
  of G  is in positive lexicographic order. The following 

conditions are equivalent: 
 
1. G is the unique labeled realization of the degree sequence α . 
 
2. There are no 2-switches or induced directed 3-cycles in G . 
 
3. For every triple of distinct indices i , j  and k  with <i j , if = 1jka , then = 1ika . 
 
4. The Fulkerson-Chen inequalities are satisfied with equality. In other words, for 1 k n≤ ≤ , 
 

     
=1 = 1 =1

min( , 1) min( , ) = .
k n k

i i i
i i k i

k kα α α− − +

+

− +∑ ∑ ∑    (1) 
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Proof. The equivalence of conditions 1  and 2  has been shown previously [2]. For this proof, we only need 
to show the implication 1 ⇒ 2, which is shown by the contrapositive: if there were a 2-switch or an 
induced directed 3-cycle in G , then we can form another graph G′  on the same degree sequence so G  
does not have a unique realization. Notice that this implication does not require positive lexicographic 
order. 
      2 ⇒ 3 (Proof by contrapositive: ¬3 ⇒ ¬2.) Let 3n ≥  and i , j , k  distinct indices so that <i j , 

= 1jka  and = 0ika . Let { , , }l i j k∉ , if such an index exists, and note that what follows holds vacuously if 
= 3n  and no such l  exists. For this l , if = 1ila  and = 0jla , then the arcs ( , )i lv v  and ( , )j kv v  form a 2-

switch. Otherwise, define ( , ) =|{ { , , } | = , = } |il jlx y l i j k a x a yκ ∉  for , {0,1}x y∈  and notice that 

(1,0) = 0κ . Thus, = (1,1)i ijaα κ+ +  and = 1 (1,1) (0,1)j jiaα κ κ+ + + + . Since i jα α+ +≥ , we have 

1 (0,1)ij jia a κ≥ + +  so = 1ija , = 0jia , (0,1) = 0κ  and =i jα α+ + . 
      Now we consider the in-degree of iv  and jv . Since = 1ija , = 0jia  and i jα α− −≥  there must be a 
vertex v  so that ( , )iv v  is an arc and ( , )jv v  is not an arc. If = kv v , then the vertices iv , jv  and kv  form 
an induced directed 3-cycle. Otherwise, set = lv v  and consider lka . If = 0lka , then the arcs ( , )l iv v  and 
( , )j kv v  form a 2-switch. Otherwise, = 1lka  and the arcs ( , )l kv v  and ( , )i jv v  form a 2-switch. 
      3 ⇒ 4. Let kA  be the k n×  submatrix of A  with only the first k  rows. We count the number of ones 

in this matrix by rows to obtain 
=1

k
ii

α +∑  and note that if j k≤  there are 
=1

= min( , 1)k
ij ji

a kα − −∑  ones in 

column j  and if >j k  there are 
=1

= min( , )k
ij ji

a kα −∑  ones in column j , then the count of ones by 

column is 
=1 = 1

min( , 1) min( , )k n
j jj j k

k kα α− −
+

− +∑ ∑ . Thus 
=1 = 1 =1

min( , 1) min( , )=k n k
j j ij j k i

k kα α α− − +
+

− +∑ ∑ ∑ , 

as desired. Notice that this implication does not require positive lexicographic order. 
      4 ⇒ 1. Assume that α  is in positive lexicographic order and that we have equality in the 
Fulkerson-Chen inequalities. We will form the adjacency matrix A  one column at a time. Let 

( , ) =|{ | = 1} |jic i k j k a≤ , the number of ones in the first k  rows of the thi  column. For any k , we have 

that the number of ones in the submatrix kA  is given by 
=1 =1

= ( , )k n
ii i

c i kα +∑ ∑ . Notice that for each i  and 

k  we have 
 

         
min( , 1)

( , )
min( , ) > .

i

i

k i k
c i k

k i k
α
α

−

−

 − ≤≤ 


    (2) 

 
Since we have equality in the Fulkerson-Chen conditions, we must also have equality for each ( , )c i k . In 
particular, considering column i , if i iα − ≥ , then let = 1ik α − + . Notice that ( , ) = min( , 1) =i ic i k kα α− −− , 
and, since = 0iia , there are only iα

−  positions for the ones in this column of kA . Therefore, = 1jia  for 
every 𝑗 ≠ 𝑖 and = 1ij k α −≤ + . This is the number of ones in this column so the rest are zeros. If <i iα − , 
let = ik α − . Again, ( , ) = min( , ) =i ic i k kα α− −  and there are only iα

−  positions for ones in this column of 
.kA  Thus, = 1jia  for every j k≤  and = 0jia  for every >j k . Each of these choices was forced, so every 

arc in G  is forced and G  is the unique realization of α . The only place that this requires positive 
lexicographic order is the set-up: to satisfy the Fulkerson-Chen conditions with equality requires α  to be 
in positive lexicographic order. 
      We call any digraph that satisfies these conditions threshold. This definition generalizes the well-
studied concept of threshold graphs [3]. 
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      As mentioned above, Rao, Jana, and Bandyopadhyay [2] showed the equivalence of conditions 1 and 2 
in the context of Markov chains for generating random zero-one matrices with zero trace. Condition 4 
appears in the literature (for example, Berger [4] states this as the definition of threshold digraphs), but we 
cannot find a proof of its equivalence to the first two conditions. Condition 3 is similar to the criteria of 
Berger [5, 6] stated without proof in the context of corrected Ferrers diagrams. 
      There are two places where the order of α  is important. One is in the statement of condition 4. The 
second is in the proof of that condition 2 implies condition 3. However, since condition 2 does not depend 
on the order of the vertices, but on the graph structure, we may characterize threshold digraphs in the 
absence of the condition that α  is in positive lexicographic order. In particular, condition 3 gives that the 
digraph is threshold even when the degree sequence is unordered. 
 
Corollary 2. Let G  be a digraph and = [ ]ijA a  an adjacency matrix of G . Define 

=1
= n

i ijj
aα + ∑  and 

=1
= n

j iji
aα − ∑ . If for every triple of distinct indices i , j  and k  with <i j  and = 1jka , it also holds that 

= 1ika , then G  is a threshold digraph. 
 
Proof. We show that such a graph cannot have 2-switches or induced directed 3-cycles. A 2-switch is 
formed with four distinct indices, i , j , k  and l  so that = = 1ij kla a  and = = 0il kja a . Without the loss of 
generality, suppose that <i k . If condition 3 holds, then = 1kla  gives = 1ila , so there are no 2-switches. 
Similarly, an induced directed 3-cycle is formed with three distinct indices, i , j  and k  so that 

= = = 1ij jk kia a a  and = = = 0ik kj jia a a . Suppose that i  is the smallest of the three indices. If condition 3 
holds and = 1jka , then = 1ika  so we cannot have an induced directed 3-cycle, either. 
      Corollary 2 gives us a constructive method for creating threshold digraphs. 
 
Corollary 3. Given a sequence 1= ( , , )nβ β β , with 0 <j nβ≤  for all j , if we define an n n×  matrix 

= [ ]ijA a  by 
 

    
1 < and

= 1 > and 1
0 otherwise,

j

ij j

i j i
a i j i

β
β

≤
 ≤ +



    (3) 

 
then the matrix A  is the adjacency matrix of a threshold digraph. Furthermore, if G  is a threshold digraph 
and 1 1= (( , ), , ( , ))n nα α α α α+ − + −

 , then the sequence 1= ( , , )nβ α α− −
  generates an adjacency matrix of G . 

 
Proof. Since A  satisfies condition 3, Corollary 2 gives that it is threshold. For a threshold digraph G , the 
only matrix which satisfies both condition 3 and the condition 

=1
=n

ij ji
a α −∑  is the matrix formed as above. 

Thus, A  must be the adjacency matrix of G . 
      Since Corollary 3 ties together sequences and threshold digraphs, one application of it is to provide 
upper and lower bounds on the number of threshold digraphs for a given n . However, if we permute a 
sequence, then the resulting threshold digraph may or may not be isomorphic. For example, on three 
vertices the six orders of the sequence (2,1,0)  produce two non-isomorphic threshold digraphs. The 
sequences (2,1,0), (1, 2,0) , and (2,0,1)  all produce the same digraph with degree sequence 
((1,2), (1,1), (1,0))  in positive lexicographic order, while the remaining three sequences produce the 
threshold digraph with degree sequence ((2,0), (1,1), (0, 2))  in positive lexicographic order. 
 

Corollary 4. Define ( )TD n  as the number of threshold digraphs on n  vertices. Then ( )
!

n
nn TD n n

n
≤ ≤ . 
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3.  Digraph Realizability 
 
      The idea of condition 4 comes from what are known as the Fulkerson-Chen inequalities for digraph 
realizability. Fulkerson studied digraph realizability in the context of zero-one matrices with zero trace [7].  
For a given degree sequence, Fulkerson gave a system of 2 1n −  inequalities that are satisfied if and only if 
the degree sequence is digraphical. The formulation that we typically use is due to Chen [8], which reduces 
the number of inequalities from 2 1n −  to n  when the degree sequence is in negative lexicographic order. 
Our consideration of threshold digraphs gives a new proof of this result. 
      This proof uses the partial order ≼, commonly called majorization [9], on integer sequences. In 
particular, for sequences 1= ( , , )nα α α  and 𝛽 = (𝛽1, … ,𝛽𝑛) we say 𝛼 ≼ 𝛽 if 

=1 =1

k k
i ii i

α β≤∑ ∑  for 

= 1, , 1k n −  and 
=1 =1

=n n
i ii i

α β∑ ∑ . One important property of this partial order is that if 𝛼 ≠ 𝛽 and 𝛼 ≼

𝛽, then there is an index i  such that <i iα β  and a first index >j i  with 
=1 =1

=j j
k kk k

α β∑ ∑ . 

 
Theorem 5. Let 1 1= (( , ), , ( , ))n nα α α α α+ − + −

  be a degree sequence in positive lexicographic order. There is 

a digraph G  which realizes α  if and only if =i iα α+ −∑ ∑  and for every k  with 1 <k n≤  
 

             
=1 = 1 =1

min( , 1) min( , ) .
k n k

i i i
i i k i

k kα α α− − +

+

− + ≥∑ ∑ ∑     (4) 

 
Proof. Suppose that G  realizes α  with adjacency matrix A . Define 
 
            ( , ) =|{ | = 1} |jic i k j k a≤      (5) 
 
as in the proof of Theorem 1, we see that 
 

      
=1 =1 =1 = 1

= ( , ) min( , 1) min( , ),
k n k n

i i i
i i i i k

c i k k kα α α+ − −

+

≤ − +∑ ∑ ∑ ∑    (6) 

 
as desired. 
      Suppose that α  is a sequence which satisfies the above inequalities. Construct an adjacency matrix 
T  as in Corollary 3 from the sequence α − . We will iteratively form a sequence of digraphs 

( )(0) (1)= , , , tmaxT B B B  with ( )tmaxB  an adjacency matrix realizing α , with ( )tβ  the sequence of row sums 
in the matrix ( )tB . By hypothesis, 𝛼+ ≼ 𝛽(0). If (0)=α β+ , then = 0maxt  and (0)=T B  is the adjacency 

matrix of the desired graph. Otherwise, define (0)
=1

1= | |
2

n
max i ii

t α β+ −∑ , and let (1, )r t  and (2, )r t  be 

indices such that (1, )r t  is the smallest index where ( )
(1, ) (1, )< t

r t r tα β+  and (2, )r t  the first index after (1, )r t  

such that (2, ) (2, ) ( )
=1 =1

=r t r t t
i ii i

α β+∑ ∑ . For < maxt t , define ( 1) ( 1) ( 1)
1= ( , , )t t t

nβ β β+ + +
  as the sequence with 

 

    

( )

( 1) ( )

( )

1 = (1, )
= 1 = (2, )

otherwise.

t
i

t t
i i

t
i

i r t
i r t

β
β β

β

+

 −
 +



    (7) 

 
Clearly 𝛽(𝑡) ≻ 𝛽(𝑡+1) ≽ 𝛼+. Since ( )

(2, ) (2, )1 t
r t r tα β+ − ≥  and ( )

(1, ) (1, )1 t
r t r tα β+ + ≤ , we have 
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       ( ) ( )
(1, ) (2, ) (1, ) (2, )( 1) ( 1) 2.t t

r t r t r t r tβ β α α+ +− ≥ + − − ≥    (8) 
 
Thus, there are columns (1, )c t  and (2, )c t  of ( )tB  that have ones in row (1, )r t  and zeros in row (2, )r t . 
Either (1, ) (2, )c t r t≠  or (2, ) (2, )c t r t≠ ; therefore, without the loss of generality, we may suppose 
that 𝑐(1, 𝑡) ≠ 𝑟(2, 𝑡). Let ( 1)tB +  be the matrix with 
 

         ( 1)

( )

0 = (1, ), = (1, )
= 1 = (2, ), = (1, )

otherwise.

t
ij

t
ij

i r t j c t
b i r t j c t

b

+







    (9) 

 
Since ( 1) ( )

=1 =1
| |= | | 2n nt t

i i i ii i
α β α β+ + +− − −∑ ∑ , we have that 

 

               ( ) (0)

=1 =1
| |= | | 2 = 0.

n n
tmax

i i i i max
i i

tα β α β+ +− − −∑ ∑     (10) 

 
Therefore, ( ) =tmaxβ α +  and ( )tmaxB  is a realization of α , as desired. 
      This proof is constructive; given a digraphical degree sequence α , we can construct a realization of α  
by repeatedly moving the ones down in the columns as in the proof of Theorem 5. There are other 
construction algorithms for digraphs, most notably that of Kleitman and Wang [10]. 
 
 
4.  Applications 
 
      What follows is a quick survey of some consequences of Theorem 1. Some details are omitted since the 
first two results are immediate. 
      Threshold graphs, in the undirected sense, are closely tied to the theory of split graphs. An analogous 
study of split digraphs is given by LaMar [11]. Using the fourth characterization of threshold digraphs and 
a result by LaMar, the immediate implication is Corollary 6. 
 
Corollary 6. Every threshold digraph is a split digraph. 
 
      Merris and Roby [12] studied the relationship between different threshold graphs as subgraphs of one 
another. As a simple consequence of the third characterization of threshold digraphs, there is a similar 
relationship between threshold digraphs which we state as Corollary 7. 
 
Corollary 7. Given a threshold digraph G , if G  is nonempty, then there is an arc e  in G  such that G e−  
is a threshold digraph. If G  is not complete, then there is an arc e  not in G  such that G e+  is a 
threshold digraph. 
 
      It has been observed that the ordering required by Theorem 5 can be relaxed and still only require the n  
inequalities stated. Berger [4] observed that we need only require nonincreasing order in the first 
component. Our theorem suggests that this can be relaxed even more, but it is not readily apparent which 
orders should be considered for graphicality. However, we can show a simple proof that nonincreasing 
order in the first component is sufficient. 
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Theorem 8. Let α  be an integer pair sequence satisfying 1i iα α+ +
+≥  for every 1 <i n≤ . If =i iα α+ −∑ ∑  

and 
 

     
=1 = 1 =1

min( , 1) min( , )
k n k

i i i
i i k i

k kα α α− − +

+

− + ≥∑ ∑ ∑     (11) 

 
for 1 < <k n , then α  is digraphical. 
 
Proof. If α  is in positive lexicographic order, then this is true by Theorem 5. Otherwise, let l  be an index 
so that 1=l lα α+ +

+  and 1<l lα α− −
+ . Form the integer pair sequence β  from α  by exchanging lα

−  and 1lα
−
+ . 

We show that α  satisfies all the inequalities if and only if β  satisfies all the inequalities. 
      From α − , form the matrix A  as in Corollary 3 and let is  be the row sums in A . From β − , form the 
matrix B  and let is ′  be the row sums in B . Notice 
 

     
=1 = 1 =1

min( , 1) min( , ) =
k n k

i i i
i i k i

k k sα α− −

+

− +∑ ∑ ∑     (12) 

 
and a similar equality holds for the sums 

=1

k
ii

s ′∑ . 
      Notice that A  and B  differ only in the columns l  and 1l + . Consider the entries in columns l  and 

1l + . We have , , 1=i l i la b +  and , 1 ,=i l i la b+  for every { , 1}i l l∉ + ; therefore, the row sums are equal except at 
these two indices. If , 1 1,=l l l la a+ + , then =l ls s′  and 1 1=l ls s+ +′ ; therefore, since s  and s′  are the same 

sequence, we have that 
=1 =1

k k
i ii i

s α +≥∑ ∑  if and only if 
=1 =1

k k
i ii i

s α +
′ ≥∑ ∑ . In general, we wish to show that 

=1 =1

k k
i ii i

s α +≥∑ ∑  for all k  if and only if 
=1 =1

k k
i ii i

s α +
′ ≥∑ ∑  for all k . 

      Since 1<l lα α− −
+  it remains only to consider the case where , 1 = 1l la +  and 1, = 0l la + . In this case, the 

construction of A  gives that 1>l ls s + . We also have that = 1l ls s′ −  and 1 1' = 1l ls s+ + + , thus 

=1 =1
=k k

i ii i
s s ′∑ ∑  for every 𝑘 ≠ 𝑙 and 

=1 =1
= 1l l

i ii i
s s ′ +∑ ∑ . Therefore, for <k l  or > 1k l + , we have that 

=1 =1

k k
i ii i

s α +≥∑ ∑  if and only if 
=1 =1

k k
i ii i

s α +
′ ≥∑ ∑ . 

      Since the sequences fail the inequalities 11 with <k l  at the same time, and one failed condition is 
enough to not pass this graphicality test, we assume that 

=1 =1 =1
=k k k

i i ii i i
s s α +

′ ≥∑ ∑ ∑  for <k l . The only 

way to have exactly one of the inequalities 11 fail at =k l  is if 
=1 =1

<l l
i ii i

s α +
′∑ ∑  and 

=1 =1

l l
i ii i

s α +≥∑ ∑ . 

Thus, 
=1 =1

=l l
i ii i

s α +∑ ∑  and l ls α +≤ . Both α  and β  fail at least one condition since 
 
          1 1= >l l l ls sα α+ +

+ +≥      (13) 
 
implies that 1 1

=1 =1
>l l

i ii i
sα+ ++∑ ∑ . 

      This section gives a brief overview of some of the applications of threshold digraphs. The uses of 
threshold graphs in various disciplines has been studied extensively, as shown in Mahadev and Peled’s text 
[3]. These results are a starting point for an analogous study of threshold digraphs. 
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