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a b s t r a c t

We generalize the class of split graphs to the directed case and show that these split
digraphs can be identified from their degree sequences. The first degree sequence
characterization is an extension of the concept of splittance to directed graphs, while the
second characterization says a digraph is split if and only if its degree sequence satisfies one
of the Fulkerson inequalities (which determinewhen an integer-pair sequence is digraphic)
with equality.
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1. Introduction

Given a graph G, we denote the vertex set by V (G) and the edge set by E(G). Similarly, for a directed graph G⃗, we denote
the vertex set by V (G⃗) and arc set by A(G⃗). A graph G is called split if the vertex set V (G) can be partitioned into a clique and
an independent set, either of which can be empty. In a clique, there is an edge connecting every pair of vertices, while in
an independent set, there are no edges connecting any vertices. More formally, we have the following definition of a split
graph.

Definition 1.1 (Split Graph [6]). A graph G is split if and only if V (G) is a disjoint union of two sets A and B such that A is a
clique and B is an independent set. In this case, X = {A, B} is called a split partition.

Split graphs are a subset of the class of perfect graphs [14,2] and a superset of the threshold graphs [12]. One of the striking
things regarding split graphs is that they can be recognized solely by their degree sequences; a degree sequence d is an
integer sequence which is graphic, that is there is a labeled graph G such that deg(vi) = di for all i = 1, . . . , |V (G)|. We
will call the degree sequence of a split graph a split degree sequence. The split degree sequence characterization states that
a non-increasing degree sequence is the degree sequence of a split graph if and only if a particular Erdős–Gallai inequality
is satisfied with equality, where the Erdős–Gallai inequalities give the necessary and sufficient conditions for an integer
sequence to be graphic [3]. In [13] it is shown that degree sequences of split graphs are near the top of the partially ordered
set of graphic integer sequences, with threshold graphs at the boundary of graphicality.

The fact that the degree sequence characterization of split graphs is intimately related to the concept of graphicality
illustrates both their importance as well as their extendability to the directed case. In particular, the Fulkerson inequalities
are the directed version of the Erdős–Gallai inequalities, that is, the Fulkerson inequalities give necessary and sufficient
conditions for an integer-pair sequence to be digraphic [7]. In this paper, we define an extended version of split graphs,
called split digraphs, that is a natural extension of both the structural characterization in Definition 1.1 as well as the degree
sequence characterization using the Fulkerson inequalities.
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Fig. 1. Left: Diagram showing the relations within and between the 4 possible vertex sets of a split partition X = {X±, X+, X−, X0
}. Solid and

dashed–dotted arrows denote all possible arcs and no constraints on arcs, respectively, while the absence of an arrow denotes no arcs. X± is a clique
and X0 is an independent set, while G⃗[X+

] and G⃗[X−
] are arbitrary subgraphs. Right: Adjacencymatrix for G⃗ in block form specified by the split partitionX.

1.1. Structure of split digraphs

We first define a split partition of a directed graph G⃗. For this definition and discussion, given a digraph G⃗ and vertex sets
X, Y ⊂ V (G⃗), we define the subgraph G⃗[X, Y ] = (X ∪ Y , A[X, Y ]), where A[X, Y ] = {(x, y) ∈ A(G⃗) : x ∈ X and y ∈ Y } and
(x, y) ∈ A(G⃗) denotes an arc from x to y. When X = Y , we have the usual definition of an induced subgraph and will denote
this by G⃗[X].

Definition 1.2 (Split Partition). Given a digraph G⃗, a vertex partition X = {X±, X+, X−, X0
} (with possible empty sets) is

called a split partition of G⃗ if and only if
(i) X± is a clique and X0 is an independent set,
(ii) G⃗[X+

] and G⃗[X−
] are arbitrary subgraphs,

(iii) there are all possible arcs from X+ to X±
∪ X− and from X± to X−, and

(iv) there are no arcs from X− to X+
∪ X0 or from X0 to X+.

We can see immediately from (i) alone that this definition includes split graphs as a special case. Since vertex sets in X can
be empty, every digraph has the trivial split partitions X = {X+

} and X = {X−
}. This leads to the following definition of

split digraphs.

Definition 1.3 (Split Digraph). A digraph G⃗ is a split digraph if and only if it has a nontrivial split partition.

The diagram in the left of Fig. 1 shows the relations within and between the four different classes of a split partition, with
solid and dashed–dotted arrows denoting all possible arcs and no constraints on arcs, respectively, and the absence of an
arrow denoting no arcs. Another useful formulation of a digraph with a split partition is via its adjacency matrix, which is
denoted in the right of Fig. 1 using the notation ofM-partitions [5]. In general, anM-partition of a digraph G⃗ is a partition of
the vertex-set V (G⃗) into k disjoint sets {X1, . . . , Xk}, where the arc constraints within and between sets are given by a k× k
matrix M with elements in {0, 1, ∗}. Mii equals 0 or 1 when Xi is an independent set or clique, respectively, and is set to ∗

when G⃗[Xi] is an arbitrary subgraph. Similarly, for i ≠ j,Mij equal to 0, 1, or ∗ corresponds to G⃗[Xi, Xj] having no arcs from
Xi to Xj, all arcs from Xi to Xj, and no constraints on arcs from Xi to Xj, respectively.

Similar to the undirected case, we will call the degree sequence of a split digraph a split degree sequence. This paper
shows that split digraphs have degree sequence characterizations analogous to the characterizations for split graphs [8],
with the surprising result that a degree sequence for a directed graph is split if and only if any of the Fulkerson inequalities
is satisfied with equality. This is in direct contrast to the undirected case where a particular Erdős–Gallai inequality has to
be tight in order to be sufficient for a degree sequence to be split.

The structure of split digraphs has appeared in previous publications. For example, their structure appears not only in
the Fulkerson inequalities which showwhen an integer-pair sequence is graphic, but also in algorithms that determine how
to construct a realization if the answer is affirmative. More specifically, split digraphs appear in [11] in a modification of the
algorithm of Kleitman and Wang [9,4] to construct a directed graph realization from a degree sequence. The algorithm of
Kleitman and Wang is a directed analogue of the constructive Havel–Hakimi Algorithm and has appeared to have gone
largely unnoticed in the literature. Interestingly, split digraphs also give important structural information when using
Markov chain Monte Carlo arc-switching techniques to sample directed graph realizations in an approximately uniform
manner from a fixed degree sequence [10,1]. In both of these cases, that is the extension of the algorithm of Kleitman and
Wang and the sampling algorithm, a digraph composition operator is defined using split partitions that bears a striking
resemblance to the composition operator used by Tyshkevich [15] to define the canonical split decomposition of undirected
graphs.

All of this shows a promise for split digraphs leading to many of the results enjoyed by split graphs, such as: a canonical
split digraph decomposition, split degree sequences near the top of a suitably ordered set of digraphic degree sequences,
and the extension of threshold graphs to the directed case.
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1.2. Undirected splittance and graphicality

In this section, we introduce the two degree sequence characterizations for split graphs.We spend the rest of the paper in
Section 2 proving analogous versions of these degree sequence characterizations for split digraphs. Hammer and Simeone [8]
determine twodegree sequence characterizations of split graphs: one through the splittance of a graph and the other through
equality of one of the Erdős–Gallai inequalities, which give necessary and sufficient conditions for when an integer sequence
is graphic. We begin by discussing the concept of splittance, whose definition is given as follows.

Definition 1.4 (Graph Splittance [8]).Define the splittance σ(G) ofG to be theminimumnumber of edges to add to or remove
from G in order to obtain a split graph.

Clearly a graph G is split if and only if σ(G) = 0. The interesting fact is that the splittance σ(G) can bewritten solely in terms
of the degree sequence d of G. To see this, let the degree sequence d be in non-increasing order, that is d1 ≥ · · · ≥ dN . If we
define the corrected Durfee numberm by

m = m(d) = max{k : dk ≥ k − 1},

and the splittance sequence {σk(d)}Nk=0 by

σk(d) =
1
2


k(k − 1) −

k
i=1

di +
N

i=k+1

di


, (1)

then we have the following theorem.

Theorem 1.5 (Hammer and Simeone [8]).

σ(G) = min
k

σk(d) = σm(d).

An important property of the splittance sequence (1) that leads to the second equality in Theorem 1.5 is that σk(d) is non-
increasing for 1 ≤ k ≤ m and strictly increasing form < k ≤ N . Thus, σk(d) has only one region of minima, which includes
the corrected Durfee numberm. The following corollary of Theorem 1.5 is immediate and gives us the first degree sequence
characterization of split graphs.

Corollary 1.6 (Hammer and Simeone [8]). If d is a non-increasing degree sequence with m its corrected Durfee number, then d
is split if and only if σm(d) = 0.

The sufficiency of Corollary 1.6 can be illustrated as follows. SupposeG is split with non-increasing degree sequence d and let
m be the corrected Durfee number for d. We haveX = {A, B} defining a split partition of G, with the clique A = {x1, . . . , xm}

and the independent set B = {xm+1, . . . , xN}. Clearly, all edges from A either go back into A or connect to B. But the number
of edges from A is

m
i=1 di, while the number of edges going back into A is m(m − 1) since A is a clique, and the number of

edges connecting to B is
N

i=m+1 di since B is an independent set. Thus, by (1), σm(d) = 0. In general, the choice of X may
not be unique. For example, if there is a vertex in A that has no connections with B, then dm = m − 1 and we also have the
split partition S ′

= (A′, B′) with A′
= {x1, . . . , xm−1} and B′

= {xm, . . . , xN}.
Hammer and Simeone also highlight a very interesting relationship between the splittance and the Erdős–Gallai

inequalities.

Theorem 1.7 (Erdős and Gallai [3]).With d a non-increasing integer sequence, d is graphic if and only if
N

i=1 di is even and for
k = 1, . . . ,N,

k(k − 1) +

N
i=k+1

min{di, k} ≥

k
i=1

di.

For a non-increasing integer sequence, if we define the slack sequence {sk(d)}Nk=0 by

sk(d) = k(k − 1) −

k
i=1

di +
N

i=k+1

min{di, k},

then Theorem 1.7 can be restated as saying d is graphic if and only if the slack sequence sk(d) is non-negative. For any
non-increasing integer sequence d with m its corrected Durfee number, by definition of m we have min{di,m} = di
for i = m + 1, . . . ,N . Thus 2σm(d) = sm(d), which by Corollary 1.6 gives us the following second degree sequence
characterization of split graphs.

Theorem 1.8 (Hammer and Simeone [8]). If d is a non-increasing degree sequence with m its corrected Durfee number, then d is
split if and only if sm(d) = 0.
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Thus, for a degree sequence to be split, the m-th Erdős–Gallai inequality must be satisfied with equality. This shows split
sequences are close to the boundary of graphicality.

The remainder of the paper in Section 2 generalizes Corollary 1.6 and Theorem 1.8 to split digraphs and is outlined as
follows. Section 2.1 defines the splittance for a directed graph G⃗ as the minimum number of arcs to add to or remove from
G⃗ to make G⃗ a split digraph. The digraph splittance can also be written solely in terms of the degree sequence of G⃗, where
a degree sequence d = {di}Ni=1 = {(d+

i , d−

i )}Ni=1 for a directed graph G⃗ is an integer-pair sequence such that the out-degree
and in-degree of vertex vi is d+

i and d−

i , respectively. We do this by defining a splittance matrix in Definition 2.9, similar to
the splittance sequence in (1). We then prove in Theorem 2.11 an analogous version of Theorem 1.5 which states that the
splittance of a directed graph is equal to the minimum of the splittance matrix (excluding entries corresponding to trivial
split partitions). This leads to the first degree sequence characterization of split digraphs in Corollary 2.12 that G⃗ is split if
and only if this minimum is zero. Since the splittancematrix may havemultiple disconnected regions of minima, in contrast
to the splittance sequence [8], the corrected Durfee number m does not have a direct extension to degree sequences for
directed graphs. However, in Definition 2.14 we define an extension which we callmaximal sequences that do share similar
properties to the correctedDurfee number, andwhich exhibit interesting structure relative to the splittancematrix, as can be
seen in Corollary 2.16 and Lemma 2.17 in Section 2.2. This allows us to prove the second degree sequence characterization
of split digraphs in Corollary 2.19, which is analogous to Theorem 1.8, stating that a digraph G⃗ is split if and only if its
degree sequence satisfies any of the Fulkerson inequalities with equality, where the Fulkerson inequalities give necessary
and sufficient conditions for an integer-pair sequence to be digraphic [7]. This is stronger than the undirected case, which
states that an undirected graph is split if and only if the m-th Erdős–Gallai inequality is satisfied with equality, where m is
the corrected Durfee number.

2. Degree sequence characterizations of split digraphs

In working with the degree sequence characterizations for split graphs using both the splittance as well as the slack
sequences, the degree sequence d needed to be non-increasing. In the directed case, we need degree sequences to be non-
increasing as well, in particular under the lexicographical ordering of the first or second coordinate. Given an integer-pair
sequence d = {(d+

i , d−

i )}Ni=1, the permutation sequence a = {ai}Ni=1 will be called a positive lexicographical ordering if and
only if d+

ai ≥ d+
ai+1

, with d−
ai ≥ d−

ai+1
when d+

ai = d+
ai+1

. Similarly, we call the permutation sequence b = {bi}Ni=1 a negative
lexicographical ordering if and only if d−

bi
≥ d−

bi+1
, with d+

bi
≥ d+

bi+1
when d−

bi
= d−

bi+1
.

We need one more subtle property of our ordering which states that if di = dj, then di is before dj in the positive
lexicographical ordering if and only if di is before dj in the negative lexicographical ordering.

Definition 2.1 (Proper Ordering). An integer-pair sequence d is said to be properly ordered with positive and negative
lexicographical orderings a and b such that if di = dj, where i = am = bn and j = am′ = bn′ , then m < m′ if and only
if n < n′.

2.1. Splittance of a directed graph

We begin this section with a generalization of graph splittance in Definition 1.4 to digraphs.

Definition 2.2 (Digraph Splittance). Define σ(G⃗) to be the minimum number of arcs to be added to or removed from G⃗ in
order to obtain a split digraph.

The following defines two measures on arbitrary partitions X = {X±, X+, X−, X0
}, which as we show in Lemma 2.5 tell us

how close X is to being a split partition.

Definition 2.3 (Split Partition Measures). Let X = {X±, X+, X−, X0
} be an arbitrary vertex partition. With k ≡ |X±

| + |X+
|

and l ≡ |X±
| + |X−

|, define the split partition measures σ̄ (X) and σ(X) as

σ̄ (X) = |X±
|

k − 1


+ |X−

|k +


X+∪X0

d−

x −


X±∪X+

d+

x ,

σ (X) = |X±
|

l − 1


+ |X+

|l +


X−∪X0

d+

x −


X±∪X−

d−

x .

By the definition of k and l in Definition 2.3, we have the equivalent formulation

σ̄ (X) = kl − |X±
| +


X+∪X0

d−

x −


X±∪X+

d+

x ,

σ (X) = kl − |X±
| +


X−∪X0

d+

x −


X±∪X−

d−

x .
(2)
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Lemma 2.4. For an arbitrary partition X = {X±, X+, X−, X0
}, we have

σ̄ (X) = σ(X).

Proof. Let X = {X±, X+, X−, X0
} be a partition with k = |X±

| + |X+
| and l = |X±

| + |X−
|. Using (2), we have

σ̄ (X) − σ(X) = kl − |X±
| +


X+∪X0

d−

x −


X±∪X+

d+

x −


kl − |X±

| +


X−∪X0

d+

x −


X±∪X−

d−

x


=


V

d−

x −


V

d+

x

= 0. �

We thus speak of the split partition measure σ(X) and work with σ ≡ σ̄ in all proofs that follow. To see that σ(X) = 0
for a split partition X, consider Fig. 1 which shows that all arcs from X±

∪ X+ include all possible arcs from X±
∪ X+ into

X±
∪ X−, as well as the arcs from X±

∪ X+ into X+
∪ X0. However, the total number of arcs from X±

∪ X+ is given by
X±∪X+ d+

x , while the total number of all possible arcs from X±
∪ X+ into X±

∪ X− is given by |X±
|(k− 1)+ |X−

|k, and the
total number of arcs from X±

∪ X+ into X+
∪ X0 is given by


X+∪X0 d−

x . This gives σ(X) = 0 by Definition 2.3.
The next lemma shows in fact that for an arbitrary partition X = {X±, X+, X−, X0

}, σ (X) gives the minimal number of
arcs to add to or remove from G⃗ in order for X to be a split partition. In particular, this implies σ(G⃗) = minX σ(X) when
minimizing over nontrivial partitions X, that is, partitions such that X ≠ {X+

} or {X−
}. Thus, we have

Lemma 2.5. For a partitionX = {X±, X+, X−, X0
}, σ (X) gives the minimal number of arcs to add to or remove from G⃗ in order

for X to be a split partition.

Proof. Given a digraph G⃗, recall the notation A[X, Y ] = {(x, y) ∈ A(G⃗) : x ∈ X and y ∈ Y }, where X, Y ⊂ V (G⃗) and
(x, y) ∈ A(G⃗) denotes an arc from x to y. For a partition X = {X±, X+, X−, X0

} with k = |X±
| + |X+

| and l = |X±
| + |X−

|,
it is easily seen that

X+∪X0

d−

x =
AX−

∪ X0, X+
∪ X0+ AX±

∪ X+, X+
∪ X0


X±∪X+

d+

x =
AX±

∪ X+, X±
∪ X−

+ AX±
∪ X+, X+

∪ X0 ,
and thus

X+∪X0

d−

x −


X±∪X+

d+

x =
AX−

∪ X0, X+
∪ X0− AX±

∪ X+, X±
∪ X−

 .
This leads to

σ(X) = |X±
|

k − 1


+ |X−

|k −
AX±

∪ X+, X±
∪ X−

+ AX−
∪ X0, X+

∪ X0 .
Note that the first three terms give the number of arcs to add to G⃗ for there to be all arcs from X±

∪ X+ to X±
∪ X−, while

the last term gives the number of arcs to remove from G⃗ so that there are no arcs from X−
∪ X0 to X+

∪ X0. The resulting
digraph after addition and removal of these arcs will have X as a split partition. By the definition of a split partition, this
is the minimal number of arcs since any other arc that is added to or removed from G⃗ is unnecessary, as illustrated by the
asterisks in the adjacency matrix in Fig. 1. �

Corollary 2.6. A partition X = {X±, X+, X−, X0
} is a split partition if and only if σ(X) = 0.

It helps at this point to make more explicit the subtle distinction between σ(X), which tells how far X is from being a split
partition, and σ(G⃗), which gives the distance to the closest split digraph.More specifically, since split digraphs are defined in
terms of nontrivial split partitions, wewill beminimizing σ(X) over all nontrivial partitions withX ≠ {X+

} andX ≠ {X−
}.

Thus, from Lemma 2.5, we have the following corollary.

Corollary 2.7. Minimizing over nontrivial partitions X = {X±, X+, X−, X0
}, we have

σ(G⃗) = min
X

σ(X).

In Theorem 2.11, we show for each fixed index pair (k, l) ∈ [0,N] × [0,N], there is a partition Ikl such that

σ(Ikl) = min
|X±|+|X+|=k
|X±|+|X−|=l

σ(X). (3)
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Note that the trivial partitions have X±
= ∅, and thusX = {X+

} andX = {X−
} correspond to the index-pairs (k, l) = (N, 0)

and (k, l) = (0,N), respectively. Putting this all together, we have

σ(G⃗) = min
X

σ(X), X nontrivial

= min
(k,l)∉{(0,N),(N,0)}

min
|X±|+|X+|=k
|X±|+|X−|=l

σ(X)

= min
(k,l)∉{(0,N),(N,0)}

σ(Ikl)

= min
(k,l)∉{(0,N),(N,0)}

Skl, (4)

where Skl ≡ σ(Ikl) is called the splittance matrix and is the directed extension of the splittance sequence in (1). These special
partitions Ikl are called induced partitions, which are defined along with a formal definition of the splittance matrix in the
following way.

Definition 2.8 (Induced Partitions). Suppose d is properly ordered with a and b the corresponding positive and negative
lexicographical orderings, respectively. For (k, l) ∈ [0,N] × [0,N], let Ak = {ai}ki=1 and Bl = {bi}li=1. The partition induced
by (k, l) is given by Ikl = {I±, I+, I−, I0} such that

I± = VAk∩Bl ,

I+ = VAk\Bl ,

I− = VBl\Ak ,

I0 = V{1,...,N}\(Ak∪Bl),

where the notation VK denotes the set of all labeled vertices indexed by the set K .

Definition 2.9 (SplittanceMatrix). Suppose d is properly ordered. For each (k, l) ∈ [0,N]×[0,N] and corresponding induced
partition Ikl, we define the splittance matrix S ≡ S(d) such that Skl = σ(Ikl).

It is important to note that the splittance matrix has starting indices at 0 and not 1.
In the chain of equalities in (4), for the equality

min
|X±|+|X+|=k
|X±|+|X−|=l

σ(X) = σ(Ikl)

to be satisfied, it is critical that d be properly ordered in constructing the induced partitions Ikl. For example, for the degree
sequence

d =


d+

1 · · · d+

4
d−

1 · · · d−

4


=


1 1 2 2
2 2 1 1


,

if we choose the positive lexicographical ordering a = (3 4 1 2) and negative lexicographical ordering b = (2 1 3 4), which
does not give a proper ordering, then the partition X ‘‘induced’’ by (k, l) = (3, 1) (which is X±

= ∅, X+
= {1, 3, 4}, X−

=

{2} and X0
= ∅) leads to σ(X) = 2. However, when we use the proper ordering with a = (3 4 1 2) and b = (1 2 3 4), then

the induced partition I31 gives σ(I31) = 1.
The main theorem of this section is Theorem 2.11 showing

σ(G⃗) = min
(k,l)∉{(N,0),(0,N)}

Skl, (5)

which by (4) reduces to showing (3). Note again that the index-pairs (0,N) and (N, 0) correspond to trivial split partitions
and therefore S0N = SN0 = 0. Thus, these corners of S are not used in computing the splittance, as seen in (5).

Before proceeding to Theorem 2.11, it is instructive to give some examples. Consider the degree sequence

d =


2 3 4 1 0
1 2 2 2 3


, (6)

which as we will see below is split. A particular labeled realization G⃗ of d is given by
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For a proper ordering of d, define the positive lexicographical ordering a = (3 2 1 4 5) and negative lexicographical ordering
b = (5 3 2 4 1). The splittance matrix S ≡ S(d) is given by

S =


10 7 5 3 1 0
6 4 2 1 0 0
3 2 1 0 0 1
1 1 1 1 2 3
0 1 2 3 4 6
0 1 3 5 7 10

 .

There are 5 nontrivial zeros in S corresponding to 5 different induced split partitions. For example, for the index pair
(k, l) = (2, 3), which corresponds to the third row and fourth column of S since the indices start at 0, we can define the sets
A2 = {a1, a2} = {3, 2} and B3 = {b1, b2, b3} = {5, 3, 2}. This index pair induces a split partition I23 as follows

I± = VA2∩B3 = {x2, x3},

I+ = VA2\B3 = ∅,

I− = VB3\A2 = {x5},

I0 = V{1,...,5}\(A2∪B3) = {x1, x4}.

Asmentionedpreviously, the splittance sequence (1) has one region ofminima,which includes the correctedDurfee number.
This example illustrates, however, that there can be multiple regions of minima in S separated by nonzero splittance.

To illustrate the connections between undirected and directed splittance, consider the degree sequence d = (4 3 3 3 3),
with the directed extension of d given by

4 3 3 3 3
4 3 3 3 3


. (7)

The splittance sequence for d is σ(d) = (8 4 2 1 1 2), while the splittance matrix for (7) is given by

S =


16 12 9 6 3 0
12 8 6 4 2 0
9 6 4 3 2 1
6 4 3 2 2 2
3 2 2 2 2 3
0 0 1 2 3 4

 .

In this case, S is symmetric and σ(d) =
1
2diag(S), with the factor of 1

2 accounting for the identification of two arcs for every
edge. This is an interesting example in that by Theorem 1.5, d is not split since σ(d) is nonzero everywhere, while its directed
extension (7) is split since S51 = S15 = 0.

We see from Definition 2.8 that VAk = I± ∪ I+ and VBl = I± ∪ I−, which gives:

• x ∈ I± ∪ I+ and y ∈ I− ∪ I0 H⇒ dx ≥ dy in the positive lexicographical ordering, (8a)

• x ∈ I± ∪ I− and y ∈ I+ ∪ I0 H⇒ dx ≥ dy in the negative lexicographical ordering. (8b)

To prove (5) in Theorem 2.11, we need the following inequalities of induced partitions, which rely heavily on the proper
ordering of d and give conditions on when strict inequality in (8a) and (8b) occurs.

Lemma 2.10. Suppose d is properly ordered and I = {I±, I+, I−, I0} is an induced partition. For x ∈ I+, y ∈ I−, z ∈ I± and
w ∈ I0, we have

d+

x > d+

y , (9a)

d−

y > d−

x , (9b)

d−

z = d−

x ⇒ d+

z > d+

y , (9c)

d+

z = d+

y ⇒ d−

z > d−

x , (9d)

d−

y = d−

w ⇒ d+

x > d+

w, (9e)

d+

x = d+

w ⇒ d−

y > d−

w . (9f)

Proof. Let a and b be the positive and negative lexicographical orderings, respectively, that give a proper ordering of d. We
now prove (9a) and (9c), with the others following similarly. For (9a), let x ∈ I+ and y ∈ I−. By (8a), d+

x ≥ d+
y . If d

+
x > d+

y ,
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then we are done, so suppose d+
x = d+

y with d−
x ≥ d−

y . But by (8b), dy ≥ dx in the negative lexicographical ordering, which
implies d−

y ≥ d−
x , and thus dx = dy. Suppose x = am = bn and y = am′ = bn′ . By (8a), we have m < m′. But by the proper

ordering of d and the fact that dx = dy, we must have n < n′. However, by (8b) and since y ∈ I−, n < n′
⇒ x ∈ I± ∪ I−,

which is a contradiction.
Now consider (9c) and let x ∈ I+, y ∈ I− and z ∈ I± such that d−

z = d−
x with d+

z ≤ d+
y . Since z ∈ I±, x ∈ I+ and d−

z = d−
x ,

by (8b) we have d+
z ≥ d+

x . But this means d+
x ≤ d+

y , which contradicts (9a). �

Theorem 2.11.

σ(G⃗) = min
(k,l)∉{(0,N),(N,0)}

Skl.

Proof. By the series of equalities in (4), we only need to show

min
|X±|+|X+|=k
|X±|+|X−|=l

σ(X) = Skl. (10)

We will work with Skl ≡ σ̄ (Ikl) and for simplicity drop the subscripts to I. We thus want to show σ(X) ≥ σ(I) for all
partitions X = {X±, X+, X−, X0

} such that |X±
|+ |X+

| = k and |X±
|+ |X−

| = l. Letting X be such a partition, then by (8b)
and (8a) we have

X+∪X0

d−

x ≥


I+∪I0

d−

x and


X±∪X+

d+

x ≤


I±∪I+

d+

x . (11)

If |I±| ≥ |X±
|, then by (2) and (11) we have σ(X) ≥ σ(I). We need to do more work however when |I±| < |X±

|. We have

σ(X) − σ(I) = kl − |X±
| +


X+∪X0

d−

x −


X±∪X+

d+

x −


kl − |I±| +


I+∪I0

d−

x −


I±∪I+

d+

x



=

 
X+∪X0

d−

x −


I+∪I0

d−

x


+


I±∪I+

d+

x −


X±∪X+

d+

x


+ |I±| − |X±

|

=

 
(X+∪X0)\(I+∪I0)

d−

x −


(I+∪I0)\(X+∪X0)

d−

x


+

 
(I±∪I+)\(X±∪X+)

d+

x −


(X±∪X+)\(I±∪I+)

d+

x

+ |I±| − |X±
|

=

 
(I±∪I−)∩(X+∪X0)

d−

x −


(I+∪I0)∩(X±∪X−)

d−

x

 (12a)

+

 
(I±∪I+)∩(X−∪X0)

d+

x −


(I−∪I0)∩(X±∪X+)

d+

x

+ |I±| − |X±
|. (12b)

Note that the two sums in (12b) have the same number of terms since

|(I± ∪ I+) ∩ (X−
∪ X0)| = |I± ∪ I+| − |(I± ∪ I+) ∩ (X±

∪ X+)|

= |X±
∪ X+

| − |(I± ∪ I+) ∩ (X±
∪ X+)|

= |(I− ∪ I0) ∩ (X±
∪ X+)|.

The same can be shown for the two sums in (12a). Now let n = |X±
| − |I±| > 0 and

Ω−
=

 
(I±∪I−)∩(X+∪X0)

d−

x −


(I+∪I0)∩(X±∪X−)

d−

x

 ,

Ω+
=

 
(I±∪I+)∩(X−∪X0)

d+

x −


(I−∪I0)∩(X±∪X+)

d+

x

 ,



1322 M. Drew LaMar / Discrete Mathematics 312 (2012) 1314–1325

so that

σ(X) − σ(I) = Ω−
+ Ω+

− n.

We need to show Ω−
+ Ω+

≥ n. Note that by (8b) and (8a), Ω−
≥ 0 and Ω+

≥ 0 and thus Ω−
+ Ω+

≥ 0. Since
|I±|+|I+| = |X±

|+|X+
|, we have n = |X±

|−|I±| = |I+|−|X+
|, and therefore there are at least n elements in the set I+\X+.

As |I±|+|I−| = |X±
|+|X−

|, by the same argument there are at least n elements in the set I− \X−. Let {x1, . . . , xn} ⊂ I+ \X+

and {y1, . . . , yn} ⊂ I− \ X−. Our technique is to go through all the pairings (xi, yi) and use the strict inequalities in (9a)–(9f)
to show Ω−

+ Ω+
≥ n. Using the fact that I+ \ X+

= I+ ∩ (X±
∪ X−

∪ X0) and I− \ X−
= I− ∩ (X±

∪ X+
∪ X0), we have

the following four cases:

xi ∈ I+ ∩ X± and yi ∈ I− ∩ X±, (13a)

xi ∈ I+ ∩ X± and yi ∈ I− ∩ (X+
∪ X0), (13b)

xi ∈ I+ ∩ (X−
∪ X0) and yi ∈ I− ∩ X±, (13c)

xi ∈ I+ ∩ (X−
∪ X0) and yi ∈ I− ∩ (X+

∪ X0). (13d)

We break case (13d) into 4 sub-cases as follows:

xi ∈ I+ ∩ X0 and yi ∈ I− ∩ X0, (14a)

xi ∈ I+ ∩ X− and yi ∈ I− ∩ X0, (14b)

xi ∈ I+ ∩ X0 and yi ∈ I− ∩ X+, (14c)

xi ∈ I+ ∩ X− and yi ∈ I− ∩ X+. (14d)

All cases that we must deal with include (13a)–(13c) and (14a)–(14d). Cases (13a) and (14a) must be dealt with differently,
since in contrast to the other cases they give one term in Ω− and another term in Ω+. First, if there is an (xi, yi) and (xj, yj)
satisfying (13a) and (14a), respectively, thenwe can switch the pairings to have (xi, yj) and (xj, yi) satisfying (13b) and (13c),
respectively. After such a re-pairing, wewill have no pairings that satisfy (13a) and/or no pairings that satisfy (14a). Suppose
there are pairings that satisfy (13a) and none that satisfy (14a) (the opposite case can be proved similarly), and let (x, y) be
such a pairing. We will define a partition X̂ such that |X̂±

∪ X̂+
| = k and |X̂±

∪ X̂−
| = lwith |X̂±

| = |X±
| − 1. We have

σ(X) − σ(I) = σ(X) − σ(X̂) + σ(X̂) − σ(I).

We show below that the constructed partition X̂ will satisfy σ(X) − σ(X̂) ≥ 0 and thus

σ(X) − σ(I) ≥ σ(X̂) − σ(I).

We can then apply this procedure recursively to remove all pairings satisfying (13a). Supposing for the sake of argument
that X̂ is the final partition with no pairings in (13a), if we can then show σ(X̂) − σ(I) ≥ 0, then we will be done.

Since |X±
| + |X+

| = |I±| + |I+|, by the definition of a partition we must have |X−
| + |X0

| = |I−| + |I0|. This implies
|X0

| − |I0| = |I−| − |X−
| = n, and thus there are at least n elements in X0

\ I0. We have three more cases for an element
z ∈ X0

\ I0 = X0
∩ (I± ∪ I+ ∪ I−), with each case and the corresponding definition of X̂ defined below:

z ∈ I+ ∩ X0
⇒ X̂ = {X±

− y, X+
+ z, X−

+ y, X0
− z}, (15a)

z ∈ I− ∩ X0
⇒ X̂ = {X±

− x, X+
+ x, X−

+ z, X0
− z}, (15b)

z ∈ I± ∩ X0
⇒ X̂ = {X±

− x − y + z, X+
+ x, X−

+ y, X0
− z}. (15c)

If in (12a) and (12b) we replace I with X̂, then for each of the cases (15a)–(15c) we have

Case (15a) : σ(X) − σ(X̂) = d+

z − d+

y − 1 ≥ 0 by (9a),

Case (15b) : σ(X) − σ(X̂) = d−

z − d−

x − 1 ≥ 0 by (9b),

Case (15c) : σ(X) − σ(X̂) = (d−

z − d−

x ) + (d+

z − d+

y ) − 1 ≥ 0 by (9c).

Thus, σ(X) − σ(I) ≥ σ(X̂) − σ(I), showing we can remove the cases (13a) and (14a).
For simplicity, we will now assume that for the original partition X, all pairings (xi, yi) are in cases (13b), (13c), and

(14b)–(14d). Thus, if we define the sets of pairings

P−
= {(xi, yi) : (xi, yi) is in case (13b), (14b), or (14d)},

P+
= {(xi, yi) : (xi, yi) is in case (13c) or (14c)},
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then we have

σ(X) − σ(I) = Ω−
+ Ω+

− n

≥


(xi,yi)∈P−

(d−

yi − d−

xi ) +


(xi,yi)∈P+

(d+

xi − d+

yi ) − n

≥ 0,

with the last line following from (9a) and (9b). The proof is now complete. �

We immediately have the following corollary, which gives the first degree sequence characterization of split digraphs and
is analogous to Theorem 1.5 for split graphs.

Corollary 2.12. d is split if and only if there exists (k, l) ∉ {(0,N), (N, 0)} such that Skl = 0.

The next section discusses the relationship between the splittance of a directed graph and graphicality. The section’s main
results are Theorem 2.18 and Corollary 2.19, with Corollary 2.19 the extension of Theorem 1.8 to split digraphs.

2.2. Directed splittance and graphicality

Similar to Theorem 1.7, the next theorem by Fulkerson gives necessary and sufficient conditions for an integer-pair
sequence to be digraphic.

Theorem 2.13 (Fulkerson [7]). Let d be an integer-pair sequence with a and b positive and negative lexicographical orderings of
d, respectively. Then d is digraphic if and only if

N
i=1 d

+

i =
N

i=1 d
−

i and for k = 1, . . . ,N,

k
i=1

min{d−

ai , k − 1} +

N
i=k+1

min{d−

ai , k} ≥

k
i=1

d+

ai

(and)
k

i=1

min{d+

bi
, k − 1} +

N
i=k+1

min{d+

bi
, k} ≥

k
i=1

d−

bi
.

Thus, for an integer-pair sequence d, we can define the slack sequences {s̄k}Nk=0 and {sk}
N
k=0 by

s̄k =

k
i=1

min{d−

ai , k − 1} +

N
i=k+1

min{d−

ai , k} −

k
i=1

d+

ai ,

sk =

k
i=1

min{d+

bi
, k − 1} +

N
i=k+1

min{d+

bi
, k} −

k
i=1

d−

bi
.

Note that s̄0 = s0 = 0 and s̄N = sN = 0.
The main theorem of this section is Theorem 2.18, which shows

σ(G⃗) = min

s̄1, . . . , s̄N−1, s1, . . . , sN−1


. (16)

Thus, G⃗ is split if and only if min

s̄1, . . . , s̄N−1, s1, . . . , sN−1


= 0. This is in direct contrast to the undirected case, where

sn = 0 for anyn is not a sufficient condition for a degree sequence to be split. For example, the degree sequence d = (43333)
has slack sequence s = (0 0 1 2 2 0) with s1 = 0 and sm = 2, wherem = 4 is the corrected Durfee number for d. Therefore,
by Theorem 1.8 d is not split. However, if we consider the directed extension of d, shown again here as

4 3 3 3 3
4 3 3 3 3


,

with slack sequences s̄ = s = s, then a digraph G⃗ with this degree sequence is split since min{s̄1, . . . , s̄4, s1, . . . , s4} =

min{0, 1, 2, 2} = 0.
Both example degree sequences (6) and (7) have the property that

s̄k = min
l

Skl and sl = min
k

Skl, (17)

which is proved in full generality in Corollary 2.16 and Lemma2.17. Thus, the slack sequences are embedded in the splittance
matrix. The following definition definesmaximal sequenceswhichwe show give the precise locations in the splittancematrix
where (17) is satisfied.
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Definition 2.14 (Maximal Sequences). Suppose d is properly ordered with a and b the corresponding positive and negative
lexicographical orderings, respectively. Define the maximal sequences {ml}

N
l=0 and {mk}

N
k=0 such that

ml = max

{0} ∪ {i : d+

ai ≥ l − 1 and if d+

ai = l − 1, then ai ∈ Bl}

,

mk = max

{0} ∪ {j : d−

bj
≥ k − 1 and if d−

bj
= k − 1, then bj ∈ Ak}


,

where Ak = {ai}ki=1 and Bl = {bi}li=1.

The maximal sequences {ml}
N
l=0 and {mk}

N
k=0 play a similar role to the corrected Durfee numberm in the undirected case, as

illustrated in the following lemma.

Lemma 2.15.

(i) For k fixed, Skl is non-increasing for 0 ≤ l ≤ mk and strictly increasing for mk < l ≤ N.
(ii) For l fixed, Skl is non-increasing for 0 ≤ k ≤ ml and strictly increasing for ml < k ≤ N.

Proof. We will prove (i), with (ii) following analogously. Let k ≥ 0 and l ≥ 1. We will keep track of the induced partitions
Ikl = {I±l , I+l , I−l , I0l } and Ik,l−1 = {I±l−1, I

+

l−1, I
−

l−1, I
0
l−1}. We have

Skl − Sk,l−1 = kl − |I±l | +


{bl+1,...,bN }

d−

i −


Ak

d+

i − k(l − 1) + |I±l−1| −


{bl,...,bN }

d−

i +


Ak

d+

i

= k −

|I±l | − |I±l−1|


− d−

bl
.

We have two cases on xbl . In the first case, xbl ∈ I+l−1 ∩ I±l , which gives |I±l | − |I±l−1| = 1. Thus, if l ≤ mk, we have

Skl − Sk,l−1 = k − 1 − d−

bl
≤ 0.

If l > mk, then since xbl ∈ I±l ⇒ bl ∈ Ak, we must have d−

bl
< k − 1 and thus Skl − Sk,l−1 > 0.

In the second case, xbl ∈ I0l−1 ∩ I−l , which gives |I±l | − |I±l−1| = 0. Thus, if l ≤ mk, we have

Skl − Sk,l−1 = k − d−

bl
≤ 0,

since l ≤ mk and bl ∉ Ak implies d−

bl
≥ k. If l > mk, then d−

bl
≤ k − 1 < k, and thus Skl − Sk,l−1 > 0. �

The following corollary is immediate.

Corollary 2.16.

min
l

Skl = Skmk and min
k

Skl = Sml l.

Finally, we have (17) by combining Corollary 2.16 with the following lemma.

Lemma 2.17.

s̄k = Skmk and sl = Sml l.

Proof. We will show s̄k = Skmk , with the other equality proven in an analogous way. The equality is trivial for k = 0 and
k = N , so suppose 1 ≤ k ≤ N−1. Let l = mk and let Ikl = {I±, I+, I−, I0} be the partition induced by (k, l). By the definition
ofmk we have d−

x ≥ k − 1 for x ∈ I±, d−
x ≥ k for x ∈ I−, and d−

x ≤ k − 1 for x ∈ I+ ∪ I0. Thus

s̄k =

k
i=1

min{d−

ai , k − 1} +

N
i=k+1

min{d−

ai , k} −

k
i=1

d+

ai

=


I±∪I+

min{d−

x , k − 1} +


I−∪I0

min{d−

x , k} −


I±∪I+

d+

x

= |I±|(k − 1) + |I−|k +


I+∪I0

d−

x −


I±∪I+

d+

x

= Skmk . �

Combining Theorem 2.11 with (17) nearly gives (16), since we have

min{s̄1, . . . , s̄N−1, s1, . . . , sN−1} = min
(k,l)∈C

Skl, (18)
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where C = [0,N]×[0,N]\{(0, 0), (0,N), (N, 0), (N,N)}. Since σ(G⃗) =


(k,l)∉{(0,N),(N,0)} Skl, wewill address the remaining
two cases (k, l) = (0, 0) or (N,N) in the following theorem.

Theorem 2.18.

σ(G⃗) = min

s̄1, . . . , s̄N−1, s1, . . . , sN−1


.

Proof. If we have (N,N) ∈ argmin(k,l) Skl, then ml = mk = N and we have d+
aN ≥ N − 1 and d−

bN
≥ N − 1, which implies

(d+

i , d−

i ) = (N − 1,N − 1) for all indices i. But this means G⃗ is a complete directed graph, and thus X = {X±
} is a split

partition. Thus, X̂ = {X̂±, X̂0
}, where X̂±

= X±
− {x} and X̂0

= {x} for any x ∈ V , is also a split partition, showing by (10)
and Corollary 2.6 that SN−1,N−1 ≤ σ(X̂) = 0.

If (0, 0) ∈ argmin(k,l) Skl, Lemma2.15 implies {(i, 0), (0, i)} ∈ argmin(k,l) Skl for i ∈ {1, . . . ,N−1}. Thus, by Theorem2.11
and (18), we have

σ(G⃗) = min
(k,l)∉{(0,N),(N,0)}

Skl

= min{s̄1, . . . , s̄N−1, s1, . . . , sN−1}. �

This leads to the second degree sequence characterization of split digraphs using slack sequences.

Corollary 2.19. d is split if and only if min

s̄1, . . . , s̄N−1, s1, . . . , sN−1


= 0.
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