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We show that finding a subgraph realization with the min-
imum generalized Randi¢ index for a given base graph
and degree sequence is solvable in polynomial time by
formulating the problem as the minimum weight perfect
b-matching problem of Edmonds (J Res Natl Bur Stand
69B (1965), 125-130). However, the realization found via
this reduction is not guaranteed to be connected. Approx-
imating the minimum weight perfect b-matching problem
subject to a connectivity constraint is shown to be NP-
hard. For instances in which the optimal solution to the
minimum Randi¢ index problem is not connected, we
describe a heuristic to connect the graph using pairwise
edge exchanges that preserves the degree sequence.
Although we focus on finding graph realizations with
minimum Randié¢ index, our results extend to finding
graph realizations with maximum Randi¢ index as well.
Applications of the Randi¢ index are provided to syn-
chronization of neuronal networks controlling respiration
in mammals and to normalizing cortical thickness net-
works in diagnosing individuals with dementia. © 2016
Wiley Periodicals, Inc. NETWORKS, Vol. 000(00), 000-000 2016
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1. INTRODUCTION

Let an undirected graph G = (N, E) be given and for
i € N, denote the degree of node i by d(i). Foragiven € R,
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the generalized Randi¢ index of G is

Ry(G) = > (d(i)-d())*.

(i)eE

Let b = (b;);cn be a sequence of positive integers, and let
Sp denote the subset of subgraphs of G so that the degrees are
specified by b. By this we mean that for H € S, andi € N,
the degree of node i is exactly b;. The generalized minimum
Randié¢ index problem is to find a subgraph H € S, so that

Ry (H) = min{R,(F) | F € Sp}.

In what follows, we focus on the generalized minimum
Randi¢ index problem, but our results extend to the case
of the generalized maximum Randi¢ index problem as well.
Because of this, we refer to the generalized Randic¢ index
problem when describing results that apply to either the min-
imum or maximum Randi¢ index problem. In this article, we
examine algorithms and complexity results for variations on
the generalized Randi¢ index problem. In particular, we have
the following results:

e We describe the first strongly polynomial algorithm to solve
the generalized minimum Randi¢ index problem. Although
we typically consider the case where o =1, our results and
algorithms apply to any non-zero «.

o We define the variant where S, is restricted to connected sub-
graphs as the connected generalized Randic index problem, an
important property for many applications [21].We prove that
the connected generalized Randi¢ index problem is APX-hard,
that is, it is even NP-hard to approximate.

e We define the variant where G is the complete graph on n
vertices as the generalized Randic¢ index degree sequence



problem. We conjecture that the connected generalized Randié¢
index degree sequence problem is NP-hard even if « is
restricted to one. However, we also conjecture that an approx-
imation algorithm exists.

e We describe an O(n®) heuristic for the connected generalized
Randi¢ index degree sequence problem, with n the number of
nodes.

e Using our heuristic, we provide computational results to inves-
tigate our conjectures concerning the connected generalized
Randi¢ index degree sequence problem.

e We provide two applications of our algorithm and heuristic as
well as computational results.

The Randi¢ index of a graph was originally defined in
chemistry by Randié [27] to estimate the degree of branching
in molecule graphs of hydrocarbons using the specific cases
of« = —1/2 and o = —1. Subsequent to [27], Bollobds et
al. [5] generalized the Randi¢ index to general « € R — {0}.
The Randié index has become a widely used graph invariant to
analyze the connectivity and assortivity properties of a graph,
for example, see Li et al. [22] and Beichl and Cloteaux [3]. A
survey of results for the Randi¢ index can be found in [23].
Thus, the generalized Randi¢ index problem and its variants
are significant and important.

To the best of our knowledge, no polynomial time algo-
rithm to solve the generalized Randi¢ index problem has been
described. Additionally, the complexity of the variants of
the generalized Randi¢ index problem are not known. Previ-
ous attempts to solve the generalized Randi¢ index problem
have focused on heuristics without a polynomial time guar-
antee. Kincaid et al. [20] propose a method based on a tabu
search. Li et al. [22] describe a heuristic for the general-
ized Randi¢ index degree sequence problem and the specific
case of o =1 but do not consider the complexity questions,
although they do consider the connected case. Aouchiche et
al. [1] describe a heuristic that uses a local search to find
graphs with specific degree properties that minimize or max-
imize a graph invariant and present computational results on,
among other invariants, the generalized Randi¢ index prob-
lem with specific values for «. The heuristic in [ 1] represents a
generalization of the heuristic described in [15]. However, in
both [1] and [15], the set of feasible graphs are not restricted
in degree.

In what follows, we describe our algorithms and heuristics
in section 2. We show that the connected generalized Randié¢
index problem is APX-hard in section 3. We provide compu-
tational results investigating the complexity of the connected
generalized Randi¢ index degree sequence problem in section
4. Finally, we provide two applications of our algorithms and
heuristics in section 5.

1.1. Notation and Definitions

We assume the reader to have a knowledge of graph theory
(see, e.g., [33]). We let R and Z denote the sets of real num-
bers and integers, respectively. We consider an undirected
graph G = (N, E), which consists of nodes N = {1,...,n}
and edges E. We assume that the graph is simple, that is, there
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are no self-loops and no multiedges. The degree of node i is
defined as d;(G) = |{j| (i,j) € E}|. The degree sequence is
the list of the degrees of all the nodes in G, which we represent
as d(G) = (d1(G),d2(G),...,d,(G)). When the particular
graph is clear from context, we omit G in the previous def-
initions. Let b € Z" be a given positive integer vector. We
define a perfect b-matching of G as follows.

Definition 1.1 (Perfect b-Matching for Undirected Graphs).
For a simple undirected graph G = (N, E) and positive inte-
ger vector b € 7, a perfect b-matching of G is a subgraph
H = (N,M) where M C E and d;(H) = b; foralli € N.

We will also refer to the subset of edges M C E, as
opposed to the subgraph H, as a perfect b-matching. A
sequence of non-negative integers is considered graphic if
it is the degree sequence of a graph. Degree sequences can
correspond to more than one adjacency matrix or graph. We
call these graphs different realizations of the degree sequence.
We use the Havel-Hakimi algorithm [13, 16] to determine if
a degree sequence is graphic. For nodes u € N andv € N,
we say u and v are connected if there exists a path from u
to v, and that a graph is connected if every pair of distinct
nodes are connected. We use the following theorem of Chen
[6] to determine whether a graphical degree sequence has a
connected graph realization.

Theorem 1.2 (Chen [6], Corollary 6.20). Letn > 2 be a
given positive integer and let (aj,as,...,a,) be a given
sequence of positive integers known to be graphical. Then,
the sequence corresponds to the degrees of the nodes of a
connected graph if and only if

1. Y"1 a; is even, and
2.3 a4 >2(n—1).

2. ALGORITHMS

Our primary goal is to devise an algorithm to solve the
generalized Randi¢ index problem. In this section, we first
describe an algorithm to solve this problem and then provide
a heuristic for the connected generalized Randi¢ index prob-
lem. Finally, we provide a technique to extend our problem
to the directed case.

2.1.  The Perfect b-Matching Problem

We first describe the perfect b-matching problem of
Edmonds [7] which could also be called the f-factor prob-
lem of Tutte [31]. Consider a graph G = (N, E), a positive
integer vectorb = (by,...,b,) € Z"and M C E, aperfect b-
matching. For a given b-matching M, the subgraph induced by
M is written (N, M). We denote the set of perfect b-matchings
of a graph G by P_b(G). For edge weights w : E — R, the
minimum weight perfect b-matching problem is that of find-
ing a perfect b-matching with minimum weight, that is, to
calculate



M*(G) = arg min {Z w(e) | M e Pb(G)} RNGY

eeM

For example, let G be the undirected graph with edge weights
as given below

andletdb = (2,1, 1,2) fornodes vi, vz, v3, and v4 respectively.
We want to select b; edges incident with each node v; that will
produce the overall minimum weight. Therefore, a minimum
weight perfect b-matching induces the graph G’ below.

Q0

2

O

Note that for this example the solution G’ is the only perfect
b-matching for G.

Theorem 2.1. The generalized Randi¢ index problem can
be solved in strongly polynomial time.

Proof. Let an instance of the generalized Randi¢ index
problem be given with a positive integer vector b € Z" and
graph G = (N, E). Then all graphs induced by perfect b-
matchings are feasible subgraph realizations for the minimum
Randi¢ index problem. Also, the edge sets of the feasible
subgraph realizations of the minimum Randi¢ index problem
are perfect b-matchings. Thus, the set of feasible perfect b-
matchings on G is identical to the set of feasible subgraph
realizations on G for the minimum Randi¢ index problem.

If our instance is a minimum Randi¢ index problem, we
create a minimum weight perfect b-matching problem with
the following edge weights. For (i,j) € E, set

wij = (bi - b))~ 2)

and if we are maximizing, set w; = —(b; - b;)*. There-
fore, we can create an instance of a minimum weight perfect
b-matching problem to solve the generalized Randi¢ index
problem. As the perfect b-matching problem can be solved in
strongly polynomial time [29], the generalized Randi¢ index
problem can also be solved in strongly polynomial time. =

Note that Theorem 2.1 does not apply to the con-
nected generalized Randi¢ index problem. We note that the

generalized Randi¢ index degree sequence problem can be
solved using the complete graph for G.

2.2.  Example: Generalized Randi¢ Index Degree
Sequence Problem

Suppose we are given the degree sequence d =
(3,2,2,2,2,1), and wish to find a graph realization with the
minimum Randi¢ index and degree sequence d. We let nodes
Vi,V2,V3,V4,V5,v6 € N with b = (3,2,2,2,2,1). Now we
can form the complete graph G, with weights corresponding
to b; - b; for every node v;,v; € N.

Now we solve the minimum weight perfect b-matching for
G and obtain G”:

G

Us Ve

G’ is a solution for the minimum weight perfect b-
matching. The sum of the weights R(G') = 6 + 6 + 4 +
4 4+ 4 + 3 = 27 is the minimum Randi¢ index. Note that
there are other solutions to the matching that will produce
the minimum Randi¢ index and a different realization, that
is, the solution is not unique.

2.3.  Heuristic for Connecting Disconnected Realizations

In this section, we present a local search heuristic using
two-switches to connect disconnected realizations. As we
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show below in Theorem 3.1, even approximating the con-
nected generalized Randi¢ index problem is NP-hard. We
therefore focus on the connected generalized Randi¢ index
degree sequence problem. However, our heuristic can be
used for the connected generalized Randi¢ index problem,

333

When doing a two-switch, we examine two edges,
(a,b),(c,d) € E. If (a,d) ¢ E and (b,c) ¢ E then we can
remove edges (a, b) and (¢, d) and create edges (a, d) and
(b, ¢). This is not a unique move, as we could also use (a,
c)and (b, d) if (a,c) ¢ E and (b,d) ¢ E. Two-switching is
an easy way to obtain a different graph with the same degree
sequence after a graph is created. In the case of the con-
nected generalized Randi¢ index degree sequence problem,
the graph could be initially created using any method, for
example, using the Havel-Hakimi algorithm [13, 16] or by
finding a perfect b-matching on a complete graph. We can
construct a metagraph of a degree sequence, where the meta-
graph is an undirected graph with each node representing a
graph realization of a degree sequence and each edge rep-
resenting a two-switch. The following theorem shows that
the metagraph is always a connected graph, as shown by
Hakimi [14].

Theorem 2.2 ([14]). Given graphs G and G’ such that
d(G) = d(G"), there exists a sequence of two-switches going
Sfrom G ro G

Note that we can use the Havel-Hakimi algorithm to dis-
card any nongraphic degree sequence. The heuristic sequen-
tially performs a two-switch between pairs of connected
components of G until all the components are connected:

Two—switch Heuristic

Inputs: G, a disconnected graph with degree sequence d
Outputs: G’, a connected graph with degree sequence d

Use Theorem 1.2 to ensure d has a connected graph

realization.

LetG' :=G.

while the number of connected components in G’ is > 2

do a two-switch with two components to connect

them using an edge from a cycle in one component
and a random edge from another component

return G’
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although we cannot prove that the heuristic terminates suc-
cessfully for that problem. We note that our heuristic is guar-
anteed by Theorem 2.3 below to terminate for the connected
generalized Randi¢ index degree sequence problem.

We describe a two-switch, with an example as follows:

f::

Note that the method to connect the disconnected real-
izations may not produce graphs with an optimized Randi¢
index. Also note that we do not need to check whether the
randomly chosen edges are adjacent or not as they are in
separate connected components.

Theorem 2.3.  The two-switch heuristic terminates in O(n>)
time.

Proof. Suppose we have k connected components. At
least one connected component must have a cycle. If not,
then each component is a tree, and every possible two-switch
keeps the number of connected components the same at k.
But this contradicts the existence of a connected realization,
as Theorem 2.2 states that any realization can be reached
through a series of two-switches. Now choose an edge on a
cycle in one of the connected components and perform a two-
switch with any random edge in one of the other connected
components. This is guaranteed to connect the two compo-
nents, giving us k — 1 connected components. By recursion,
we have the result. As cycles can be detected using a depth-
first search algorithm in O (n+m) time, where m is the number
of edges, and there are k — 1 < n iterations of the heuristic,
a connected realization can be achieved in O(n°) time. .

2.3.1. Extension to Directed Graphs In this section, we
extend our algorithm to directed graphs with no loops, that
is, no edges from a node to itself. Multiedges are, however,
allowed. In particular, we first define a directed Randi¢ index,
and then show how a directed perfect b-matching problem can
be formulated as an undirected perfect b-matching problem
on an associated bipartite graph. Our extension is similar to
[24] in which the maximum matching problem is extended
to directed graphs for a network controllability problem.
Consider the directed graph _G) = (N, E) with node set
N = {vi,...,v,} and edge set E = {(v;,v}) |vi = vj}. As
stated, we assume _G> has no loops, that is, for all (v,u) €
E,v) =u. The degree sequence for 6) is a non-negative
integer-pair sequence d = {(d;r,dl._) |i = 1,...,n}, where



FIG. 1. Left: Directed graph 8 = (N,E) with node set N =
{vi,v2,v3,v4}. Right: Bipartite representation 6)* = (N*,E*), where
N* = NFUN—,Nt = {vT,...,v;r}, N~ = {v,..., v}, and e* =

v .v7) € E*ifand only if e = (v;,)) € E.

we denote the out-degree and in-degree sequences by d™ and
d~, respectively. There are four different Randi¢ index-type
measures [35] given by

RMG) = Y d’d!, (3)
i,v))EE

where p,q € {—, +}.
We define a perfect b-matching in a directed graph as
follows.

Definition 2.4. (Perfect b-Matching for Directed Graphs).
For a loop-free, directed graph _G) = (N,E) and posi-
tive integer-pair sequence b = (b*,b™) = {(bf,bi_) €
7" x Z"|i = 1,...,n}, a perfect b-matching is a subgraph
(N, M) with M < E such that for node v; € N, the out
and in-degree of v; in the subgraph (N, M) are bi+ and b;,
respectively.

To use the existing algorithm for undirected graphs, we

consider the equivalent bipartite form of ?}) given by G =
(N*,E*),whereN* = NFUN—, N* = (v],... v, N~ =
vi,...,v,}, and e* = (v;r,v;) € E* if and only if
e = (v;,vj) € E (see Fig. 1 for an example). We can define

a perfect b-matching on G as a subset of edges M* C E*
such that for node v; € N or N—, the degree of node v;
in (N*, M*) is bl.+ or b, respectively. This modified defini-
tion is a special case of the undirected version with node
set N = (vfr,.. v Vi,...,v,) and the positive vector

ERS 7]
b = (b+,... bt by,...,b;). Thus, to find a minimum

sYn s
weight perfect b-matching for a directed graph 8, we simply

find a minimum weight perfect b-matching for its bipartite
— %

form G .
The generalized Randi¢ index degree sequence problem

can also be formulated for directed graphs G as follows (see
Fig. 2):

FIG. 2.

problem for an example directed graph 6 = (N,E) with node set
N = (v,..., v4), out-degree sequence (ler ..... dj) and in-degree sequence

Bipartite setup of the generalized Randi¢ index degree sequence

(dy ,...,d; ). The network shown is the bipartite form ?j of the com-

plete (loop-free) directed graph 7{)4, with corresponding node set N* =
oF,...ovovi,...,v))andpositive vectorb = (df ,....dJ . d;,....d}).
For the minimum weight perfect b-matching algorithm, we would set

wi = dd!, where p,q € {+,—}.

e Consider the bipartite form 7(): of the complete directed graph
r&

o letbt =dTandb™ =d".

e For p,g € {+,—}, let edge weights w; = d[.pd;’ [see
Equation (3)].

3. COMPLEXITY

In this section, we show that even approximating the con-
nected generalized Randi¢ index problem is NP-hard. We first
define approximation algorithms (see [32] for further details
about approximation algorithms). LetS C R"andf : § — R
be a given feasibility set and objective function, respectively.
Define an n-approximation algorithm for the minimization
problem v* = minycgf (x) as a polynomial time algorithm
that finds a solution y € S with f(y) < nv*. We say that
we can approximate a minimization problem if there exists
an 7 such that an n-approximation algorithm exists. Note
that » > 1 is implicit with n =1 only if an exact algorithm
exists.

Theorem 3.1. Approximating the connected generalized
Randic¢ index problem is NP-hard.

Proof. Recall that a Hamiltonian cycle on G is a simple
cycle that includes all nodes of G. We claim the existence
of a Hamiltonian cycle on a given graph is equivalent to the
feasibility of the connected minimum Randi¢ index problem
on a related instance. Recall that an instance of Hamiltonian
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cycle consists of a graph, so let such an instance be given with
G = (N, E). Now define the vector b € RV by setting b; =2
fori € {1,...,|N|} and consider the resulting connected
generalized Randi¢ index instance using the graph G and
vector b.

We first show that if the connected generalized Randié
index instance (G, b) is feasible, then there is a Hamiltonian
cycle on G. Suppose there is a feasible solution H = (N, F),
which means F C E, eachnode u € N has degree 2, and H is
connected. As each node has even degree and H is connected,
there is an Eulerian cycle T on H. We claim that T is a Hamil-
tonian cycle on G, which means each node is visited exactly
once by T except the start node which is visited exactly twice.
Choose u € N and note that two edges of T are incident with
u. Then, because T traverses every edge, the node u is visited.
Denote the start node of 7' by s € N and consider traversing
T beginning at s. If the traversal visits a node u € N \ {s}
more than once then an edge was traversed into u, a second
distinct edge was traversed out of «, and a third distinct edge
was traversed into u, a contradiction as there are exactly two
distinct edges adjacent to u in H. The same argument applies
if s is visited more than once before the traversal is complete.
So each node is visited exactly once by T except the start
node, which is returned to when the traversal is complete,
that is, 7' is a Hamiltonian cycle. Thus, if the instance (G, b)
is feasible, then G possess a Hamiltonian cycle.

We now show that if there is a Hamiltonian cycle on G, then
the connected generalized Randi¢ index problem on (G, b)
is feasible. Consider a Hamiltonian cycle C on G and the
subgraph induced by C. Such a subgraph is connected as each
node is visited. Also, each node has degree 2 as each node
u € N has one arc used to enter # and exactly one distinct
arc used to exit u. Thus, if G possesses a Hamiltonian cycle,
then (G, b) must be feasible to the given connected minimum
Randi¢ index instance.

Now suppose there were an n-approximation algorithm
to the connected generalized Randi¢ index problem for some
n > 1.Ifthe algorithm returns a solution to the instance (G, b)
then G possesses a Hamiltonian cycle. If it does not, then the
instance (G, b) was not feasible and G does not possess a
Hamiltonian cycle. Note that the argument does not rely on
what value 7 is. .

Note that we have not shown what the complexity is when
the input graph G is the complete graph, that is, we do not
know the complexity of the connected generalized Randié
index degree sequence problem.

4. COMPUTATIONAL RESULTS

In this section, we seek to gain insight into the complexity
of the connected generalized Randi¢ index degree sequence
problem. To investigate this problem, we use a simplified
version of our heuristic to try and find connected realizations
of degree sequences with small Randi¢ index. We generate
these sequences based on three graph families and investigate
how successful the heuristic is on each family.

6 NETWORKS—2016—DOI 10.1002/net

To solve the connected generalized Randié index degree
sequence problem we use an implementation of an algorithm
for solving the minimum weight perfect b-matching problem
that was written by Andrews, Huang, Jebara, and Schogolev
(http://www.cs.columbia.edu/~jebara/code/bmatch/) and uses
the GOBLIN graph library (http://goblin2.sourceforge.net/).
Our experiments were all conducted in MATLAB using an
Apple iMac machine with 2.2 GHz i7 quad core processors
and 16 GB of RAM. We were unable to find other imple-
mentations of b-matching algorithms on MATLAB although
more efficient algorithms of b-matching algorithms have been
studied [25]. Based on the limitations of our code and envi-
ronment, we found that running instances with more than 100
nodes was not tractable. Therefore, we focused on instances
of that size or smaller.

We used three families of graphs in our experiments:
Erd6s-Rényi, geometric and scale-free which we describe
below. We limited our computational experiments to degree
sequences for which connected realizations were known
to exist. Theorem 1.2 was used to discard graphs with a
degree sequence that had no connected realizations. The
MATLAB functions used to generate the geometric and scale-
free graphs are from CONTEST: A Controllable Test Matrix
Toolbox for MATLAB [30].

We now describe the three families of graphs:

4.1. Erdds-Rényi Graphs

A number of nodes » and a probability of edge connection
p are chosen. A uniform random number on the interval [0, 1]
is generated for each possible edge. If the number generated
for an edge is less than p then the edge is added to the graph.

4.2.  Geometric Graphs

A number of nodes n and a radius r are chosen. Each node
v; is placed uniformly at random in the unit square, giving
coordinates (x;,y;). We connectnodes v; and v; if (x; — xj)2 +

i —yp)? < r* [30].

4.3.  Scale-Free Graphs

A preferential attachment algorithm is used to create
graphs whose degree sequences follow a power-law distribu-
tion. Following the convention in the literature, we will refer
to these graphs as “scale-free.” A number of nodes 7 is cho-
sen. New nodes are added and connected to existing nodes,
based on a probability proportional to the current degree of
the nodes, until you reach n nodes, making it more likely that
a new node will be connected to a higher degree node [30].
The algorithm allows a minimum node degree to be specified.

For each family of graphs, we generated graphs with 25,
50, and 100 nodes, and generated enough graphs until we
found 100 instances of each graph type and size that corre-
sponded to a connected degree sequence. For the Erd&s-Rényi
graphs, we used an average degree per node of 4.25. The cor-

responding p values used were calculated using p = %



TABLE 1. Maximum percent increase in Randi¢ index

Number of nodes  Erdds-Rényi (%)  Geometric (%)  Scale-free (%)

25 0.35 0.57 32
50 0.54 0.77 4.5
100 1.1 0.37 4.6

TABLE2. Number of degree sequences with minimum Randic¢ index graph
realizations that were not connected

Number of nodes Erd&s-Rényi Geometric Scale-free
25 1 3 3

50 9 9 9

100 8 6 14

where n is the number of nodes in the graph. Thus p=0.17
for n=25, p=0.085 for n =50, and p =0.043 for n=100. For
the geometric graphs we used an average degree per node

of 6. The radii were calculated using r = \/g . Our corre-
sponding radii were r =0.276 for n =25, r =0.195 for n =50,
and r=0.138 for n=100. We used scale-free graphs with a
minimum node degree of 2.

For each graph, we solved the associated minimum Randié
index degree sequence problem, that is, we used the degree
sequence of the graph as input. Then, if the resulting graph
was not connected, we used a simplified version of our heuris-
tic to connect the graph by choosing one edge at random in
each component to connect them. We report the maximum
percent that the heuristic would increase the Randi¢ index
in Table 1 and the number of degree sequences where the
graph realization with the minimum Randi¢ index was not
connected in Table 2.

As shown in Table 1, when the heuristic was used to recon-
nect the graphs, the maximum percent increase in the Randi¢
index was less than 5%. Also, the graph realization associ-
ated with the minimum Randi¢ index was often connected.
These results provide evidence that the connected general-
ized Randi¢ index degree sequence problem is easier than
the connected generalized Randi¢ index problem. We, there-
fore, conjecture that the connected generalized Randi¢ index
degree sequence problem is NP-hard, but that there does exist
a constant-factor approximation algorithm.

5. APPLICATIONS

We will now show results for two applications where
the effects of network connectivity measures have shown
or are hypothesized to play an important role: neuronal
synchronization and dementia.

5.1.  Neuronal Synchronization

We first show how finding graphs with optimized assorta-
tivity can be useful in predicting neuronal network dynamics.
We do this by considering the synchronous firing of neurons

in the preBotzinger complex. This collection of neurons is
responsible for the control of respiration in mammals [8].

Using NeuronetExperimenter [17], we simulated 150
rhythmogenic neurons in the preBo6tzinger complex using the
Rubin—Hayes neuron model [28]. It is unknown what degree
distribution and network connectivity arise in neuronal net-
works. However, it seems reasonable to expect that neurons
closer to each other are more likely to be connected. Hence,
we have chosen to model these networks with 3D geometric
(directed) graphs.

A plot of the simulation results are displayed in Figure 3,
which shows a spike raster plot of 150 neurons firing over time
for three different realizations of a fixed degree sequence: the
first, middle, and right plots correspond to network realiza-
tions with minimum, original, and maximum Randi¢ indices,
respectively [ R~ (G), see Equation (3)]. The length of a
breath is given by the time between when all neurons fire
simultaneously, given approximately by the solid vertical
lines in the plots. For this specific example, we see a ten-
dency for faster breathing rhythms at the minimum Randi¢
index, as well as more synchronous behavior with network-
wide quiescence and activity, as evidenced by the larger
gaps of no activity and less noise in the network-wide firing
phase in the minimum Randi¢ index case. A more exten-
sive study would be required to extend this proof-of-concept
work.

5.2.  Normalizing the Randic¢ Index in Cortical Thickness
Networks

Recently, researchers have begun using graph measures of
connectivity to investigate the difference between structural
magnetic resonance images taken from healthy individu-
als and individuals diagnosed with dementia (for example,
[2, 18, 19, 34]). Networks in these studies are formed by
calculating correlations between the cortical thicknesses of
different brain regions, a technique based on the correla-
tion between cortical thickness loss and dementia [10, 12].
This method of network creation has been speculated to pro-
vide more insight on the functional relationships between
brain regions [11]. Details of how the networks are formed
can be found in [18, 26] and we present one such method
below. After networks for each subject population (e.g.,
normal, subjects with dementia) are formed, network mea-
sures (e.g., Randi¢ index) are calculated and evaluated for
significance.

A particular challenge to using comparisons between the
network measures is complicated by the varying number of
edges in each of the networks. In particular, some kind of
normalization is required for some of the measures used. To
normalize, we propose the following scheme:

1. For each network N, determine the underlying degree
distribution b.

2. Calculate Uy, the maximum Randi¢ index for b, respec-
tively.

3. Use U, to normalize the Randi¢ index for N.
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FIG.3. Neuron spike raster plots for realizations of a specified geometric directed network with minimum Randi¢
index (R~ (G)) on left, Randi¢ index from the original network in the center, and maximum Randic¢ index on the
right. The x-axis is time and the y-axis represents neuron number. The dots represent when each neuron is firing
an action potential. The directed Randi¢ index R(G) is as defined in Equation (3).

We use data from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) and further analyzed by FreeSurfer, a tech-
nique developed by Fischl and Dale [9] to measure cortical
thicknesses. When applied to the ADNI data, Fischl and Dale
discretized the cortical layer into 68 different regions. Phillips
et al. [26] used the following steps to generate networks:

1. Subset the population into categories based on whether
they were diagnosed as normal (Normal), diagnosed with
mild cognitive impairment for three or more years with-
out disease progression (MCI), diagnosed with mild cog-
nitive impairment and then progressed to Alzheimer’s
Disease within three years (MCI-AD), or diagnosed with
Alzheimer’s Disease (AD).

2. Within each population, use regression to control for sub-
ject age, gender, education level, and interaction effects
between age and gender.

3. Use either partial or Pearson’s correlations to calculate
coefficients and p-values between each of the 68 regions.

4. Use False Discover Rate [4] calculations to determine
significant correlation coefficients with an error rate of
5%.

5. Use one of the following schemes to determine edge
weights:

(a) Use no weights: simply include edges or not.

(b) Use the absolute value of the correlation coeffi-
cients as the edge weight.

(c) Use the product of the normalized cortical thick-
nesses (i.e., the cortical thicknesses divided by
the maximum) between the two regions con-
nected by the significant edge.

(d) Use both 5b and 5c.

Given the four diagnostic categories, the two possibilities in
Step 3, and the four possibilities in Step 5, there are a total of
8 different networks. After calculating the associated degree
distributions, we can calculate the maximium Randi¢ index.
As an example, we display the results for one network in
Tables 3 and 4.

By normalizing the Randi¢ index, comparisons between
the groups can more accurately determine whether the assor-
tativity was due to the actual network topology versus other
features, such as the total number of edges. For example, as
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TABLE3. Original, maximized, and normalized Randié index. CT weight-
ing used with partial Pearson’s correlations

Group Original Randi¢ index Maximum Randi¢ index Percentage
AD 1293.97 1651.69 78.34%
MCI-AD 1491.38 1908.27 78.15%
MCI 615.10 809.41 75.99%
Normal 129.30 193.47 66.83%

TABLE 4. Original, maximum, and normalized Randi¢ index. CT weight-
ing used with ordinary Pearson’s correlations

Group Original Randi¢ index Maximum Randi¢ index Percentage
AD 172910.5 182773.6 94.6%
MCI-AD 182098.8 192005.4 94.84%
MCI 146719 155715.5 94.22%
Normal 231957.8 244387.6 94.91%

shown in Table 3, the normalized Randi¢ index differenti-
ates normal subjects from subjects with dementia symptoms.
Also, the normalized Randi¢ index shows that the disease pro-
gression does increase the Randi¢ index monotonically with
increasing symptoms whereas the original Randi¢ index is not
monotonic. Many studies simply delete edges in networks, to
compare non-normalized graph measures [18, 19, 34]. Such
methods effectively discard significant data about the rela-
tionships between different brain regions. Normalizing by
dividing out by the optimized metric allows for comparisons
without ignoring network features. We note that normaliza-
tion can also demonstrate when some graph creation methods
are not useful in finding discernable differences in the Randi¢
index. Based on our results, we would conclude that par-
tial correlations are necessary for finding significant Randié¢
index differences. This can be seen by comparing the per-
centages in Table 3 versus those in Table 4. However, to
actually use the optimization in such a statistical study, signif-
icance testing (e.g., permutation testing to determine whether
the comparisons are valid) would be required, for example,
see [26].



6. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, we have described the
first known polynomial algorithm for the generalized Randié¢
index and the generalized Randi¢ index degree sequence
problems. A key feature of our algorithm is that it works for
all non-zero values of the Randi¢ index parameter «. In addi-
tion, we showed that the connected generalized Randi¢ index
problem is NP-hard to approximate. We provided computa-
tional evidence to support our conjecture that the connected
generalized Randi¢ index degree sequence problem is at least
approximable. Finally, we showed two applications of our
algorithms to two different computational biology problems.

In addition to resolving our conjecture about the con-
nected generalized Randi¢ index degree sequence, future
work includes implementing faster versions of our algorithm
and heuristics. In addition, we are interested in finding fur-
ther applications of our algorithms and heuristics. We are
also interested in developing an effective heuristic for the
connected generalized Randi¢ index problem.
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