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Abstract
Mathematical models of calcium release sites derived from Markov chain models of
intracellular calcium channels exhibit collective gating reminiscent of the experimentally
observed phenomenon of stochastic calcium excitability (i.e., calcium puffs and sparks).
Calcium release site models are stochastic automata networks that involve many functional
transitions, that is, the transition probabilities of each channel depend on the local calcium
concentration and thus the state of the other channels. We present a Kronecker-structured
representation for calcium release site models and perform benchmark stationary distribution
calculations using both exact and approximate iterative numerical solution techniques that
leverage this structure. When it is possible to obtain an exact solution, response measures such
as the number of channels in a particular state converge more quickly using the iterative
numerical methods than occupation measures calculated via Monte Carlo simulation. In
particular, multi-level methods provide excellent convergence with modest additional memory
requirements for the Kronecker representation of calcium release site models. When an exact
solution is not feasible, iterative approximate methods based on the power method may be
used, with performance similar to Monte Carlo estimates. This suggests approximate methods
with multi-level iterative engines as a promising avenue of future research for large-scale
calcium release site models.

S This article has associated online supplementary data files

1. Introduction

The stochastic gating of voltage- and ligand-gated ion channels
in biological membranes observed by single-channel recording
techniques is often modeled using continuous-time discrete-
state Markov chains (CTMCs) [1, 2]. While the scientific
literature developing stochastic models for the behavior of ion
channels is largely focused on single channels or populations
of independent channels, the application and extension of
these techniques to the collective gating of interacting ion

4 These authors contributed equally to this work.

channels is an important topic of current research. For
example, interacting aggregated CTMCs have been used
by Ball and colleagues to simulate and analyze membrane
patches containing several ion channels [3, 4]. A second
example is the simulation of plasma membrane receptor
arrays involved in bacterial chemotaxis where conformational
energies (and thus transition rates) depend on the state of
neighboring receptors [5–7]. A third example, the subject
of this paper, are simulations of clusters of intracellular
Ca2+-regulated Ca2+ channels—1,4,5-trisphosphate receptors
(IP3Rs) and ryanodine receptors (RyRs) located on the surface
of the endoplasmic reticulum or sarcoplasmic reticulum
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Figure 1. (a) Left: [Ca2+] near 3 × 3 µm2 endoplasmic reticulum membrane with 12 Ca2+-regulated Ca2+ channels modeled as three-state
Markov chains (see figure 2(a)) with positions randomly chosen from a uniform distribution on a disc of radius 2 µm (source amplitude
0.05 pA). Buffered Ca2+ diffusion is modeled as in [13] (see appendix A). Middle: stochastic dynamics of the number of open channels at
the release site (NO) that does not include robust puffs/sparks. Right: probability distribution of the number of open channels leading to a
low puff/spark Score of 0.19. (b) Different random channel positions result in a release site that exhibits robust Ca2+ puff/sparks (middle)
and an elevated Score of 0.39 (right).

membrane—that give rise to localized intracellular [Ca2+]
elevations known as Ca2+ puffs and sparks [8–12].

When Markov chain models of Ca2+-regulated Ca2+

channels are coupled via a mathematical representation of
buffered diffusion of intracellular Ca2+, simulated Ca2+

release sites may exhibit the phenomenon of ‘stochastic Ca2+

excitability’ where the IP3Rs or RyRs open and close in a
concerted fashion [14, 13] (see figure 1 for representative
simulations). Such models are stochastic automata networks
(SANs) that involve a large number of functional transitions,
that is, the transition probabilities of one automata (i.e., an
individual channel) may depend on the local [Ca2+] and thus
the state of the other channels. Because the number of
channels in the open class of states, NO(t), can in principle
be back-calculated from microfluorometric measurements of
elevated local [Ca2+], our simulations and analysis focus on
the stochastic dynamics of NO(t) (see figures 1(a) and (b),
middle).

While the relationship between single-channel kinetics
of Ca2+-regulated channels and the collective phenomenon
of Ca2+ puffs and sparks is not fully understood, several
groups have presented mathematical modeling studies of Ca2+

release sites that provide insight into the emergent properties of
stochastic Ca2+ excitability [13–23]. For example, it has been
shown that allosteric interactions between intracellular Ca2+

channels may lead to synchronous gating [17, 24], but such
direct coupling is not required [13, 14, 23]. Rather, Ca2+ puffs
and sparks can readily be observed when the coupling between
single-channel models is mediated entirely via the buffered
diffusion of intracellular Ca2+ simulated through numerical
solution of a system of nonlinear reaction–diffusion equations.
In the above mentioned studies, the specific single-channel
model chosen, the release site geometry, and the description
of the cytosolic milieu all contribute to the measured statistics
of simulated puffs and sparks such as amplitude, duration

and inter-event interval. The IP3R or RyR models used often
include transitions representing fast Ca2+ activation and slower
Ca2+ inactivation, two phenomena that have been repeatedly
(but not uniformly) observed in single-channel recordings
from planar lipid bilayer and nuclear patch experiments
[25–31].

Many of the studies mentioned above assume mean-field
Ca2+ coupling where the channels have no explicit spatial
positions at the release site. These reduced simulations assume
that the local [Ca2+] experienced by each channel depends
on the number of open channels at the Ca2+ release site, as
though the channels were indistinguishable. In prior work we
have shown that mean-field simulations are often in reasonable
agreement with results obtained using spatially explicit release
site models [32]. However, in some cases channel position can
significantly influence release site dynamics. For example,
figures 1(a) and (b) show two representative Ca2+ release
site simulations that are identical except for channel positions
(left). These differences in channel positions lead to minimal
release site activity in figure 1(a) (middle) but robust release
site activity in figure 1(b) (middle) that is reminiscent of the
phenomenon of Ca2+ puffs or sparks. Note that the presence or
absence of puff/sparks in Ca2+ release site simulations can be
determined from the steady-state distribution of the number
of open channels at the release site (figure 1, right) using a
response measure dubbed the puff/spark Score [13],

Score = Var[fO]

E[fO]
= 1

N

Var[NO]

E[NO]
, (1)

where fO = NO/N is the fraction of open channels. The
puff/spark Score takes values between 0 and 1, and a Score of
greater than approximately 0.3 indicates the presence of robust
stochastic Ca2+ excitability (as in figure 1(b)).

While response measures such as the puff/spark Score
and the probability distribution of NO can be estimated via
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Figure 2. (a) Three-state single-channel model with Ca2+-mediated activation that has two closed (C1, C2) and one open (O1) state.
Parameters in µM−1 ms−1: k+

a = 1.5, k+
b = 150; in ms−1: k−

a = 50, k−
b = 1.5. (b) Six-state single-channel model with Ca2+-mediated

activation and inactivation. Parameters in µM−1 ms−1: k+
a = 1.5, k+

b = k+
d = 0.015, k+

c = k+
e = 300, k+

f = 3.0; in ms−1: k−
a = 49.5, k−

b = k−
d =

0.2475, k−
c = k−

e = 6.0, k−
f = 0.03.

Monte Carlo simulation, these quantities can also be directly
calculated without simulation. In this case the stationary
distribution of the generator matrix for a Ca2+ release site
model is obtained using numerical linear algebra techniques,
and response measures such as the puff/spark Score and
the distribution of NO are subsequently calculated from the
stationary distribution, i.e., the steady-state probability of each
release site state (see section 3). Because prior work indicates
that the direct approach is computationally more efficient than
Monte Carlo simulation [13], we aimed to apply advanced
solution methods for Markov chains to models of coupled
Ca2+-regulated Ca2+ channels. Using a Kronecker-structured
representation of the generator matrix for a Ca2+ release site
model and memory-efficient algorithms applicable to large-
scale Markov chains, this paper implements and benchmarks
exact and approximate stationary distribution calculations
for release sites with explicit channel positions and up to
1.6 million distinct states.

The remainder of this paper is organized as follows. In
section 2 we briefly review our model formulation for coupling
Ca2+-regulated Ca2+ channels via the buffered diffusion of
intracellular Ca2+, and we present a Kronecker-structured
representation for such Ca2+ release site models. In section 3
we review a variety of exact and approximate solution methods
for the stationary analysis of CTMCs. In sections 4.1–4.3 we
perform benchmark calculations using various exact solvers
and analyze the performance of four numerical methods
as a function of problem size, e.g., the time required to
accurately calculate response measures such as the puff/spark
Score. In sections 4.4 and 4.5 we present results using an
approximate solution technique and examine its reliability by
comparison to exact solutions. In section 4.6 we analyze and
discuss the extent to which the currently available approximate
methods are applicable given the state-space explosion of
physiologically realistic Ca2+ release site models. In section 5
we make a specific proposal for future research in iterative
numerical solution methods for Markov chain models of
coupled Ca2+-regulated Ca2+ channels.

2. Modeling the coupled gating of Ca2+-regulated
Ca2+ channels

The stochastic dynamics of single-channel gating has been
successfully modeled using continuous-time discrete-state
Markov chains (CTMCs) [1, 2]. In this paper we consider
two Ca2+-regulated Ca2+ channel models: a three-state channel
that is activated by Ca2+ (figure 2(a)) and a six-state model that
includes both fast Ca2+ activation and slow Ca2+ inactivation
(figure 2(b)). In the state-transition diagrams shown in
figure 2, k+

i c and k−
i with i ∈ {a, . . . , f } are transition

rates with units of reciprocal time, k+
i is an association rate

constant with units of conc−1 time−1, and c is the local [Ca2+]
experienced by the Ca2+-regulatory site of the channel. If
this local [Ca2+] is specified, the transition-state diagrams
shown in figures 2(a) and (b) define CTMCs that take on
values in their respective state-spaces: S = {C1, C2,O1} and
S = {C1, C2,R1,R2,R3,O1}, respectively.

In the six-state model, Ca2+-mediated transitions out of
the open state can be accelerated due to the increase in local
[Ca2+] when a Ca2+-regulated Ca2+ channel is open [33, 34].
Assuming the formation and collapse of Ca2+ microdomains
is fast compared to channel gating (see appendix B), we can
denote the background and domain [Ca2+] experienced by the
channel when closed and open as c∞ and cd , respectively. With
this assumption the generator matrices for both the three- and
six-state models take the form

Q = K− + (c∞I + cdIO)K+, (2)

where K− and K+ are M × M matrices that collect the
unimolecular

(
k−
i

)
and bimolecular

(
k+
i

)
transition rates, I is

the M ×M identity matrix, IO = diag{eO} and eO is an M ×1
vector indicating open states of the single-channel model [13].
For example, for the three-state model of figure 2(a) we have

K− =

⎛
⎜⎝

0 0 0

k−
a −k−

a 0

0 k−
b −k−

b

⎞
⎟⎠ , K+ =

⎛
⎜⎝

−k+
a k+

a 0

0 −k+
b k+

b

0 0 0

⎞
⎟⎠ ,
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eO = (0, 0, 1), and because the product IOK+ is a zero matrix,
the generator matrix Q is simply

Q =

⎛
⎜⎝

−k+
a c∞ k+

a c∞ 0

k−
a −k−

a − k+
b c∞ k+

b c∞
0 k−

b −k−
b

⎞
⎟⎠ . (3)

While this matrix can be read off from figure 2(a) with the
replacement of c∞ for c, in the case of the six-state model
the Ca2+-mediated transition out of state O1 leads to nonzero
IOK+ and anO1 → R2 transition rate of k+

d (c∞+cd). All other
Ca2+-dependent transition rates are given by setting c = c∞ in
figure 2(b).

2.1. SAN descriptor for two Ca2+-regulated Ca2+ channels

In our model formulation, the interaction between channels
located at the same release site is mediated through the
buffered diffusion of intracellular Ca2+ (see [13] for a complete
description). Briefly, the N channels at the Ca2+ release
site have positions chosen from a two-dimensional uniform
distribution on a disc of radius 0.1–2.0 µm (see figure 1,
left). When in the open state, each channel contributes to
the landscape of [Ca2+] throughout the Ca2+ release site—the
so-called Ca2+ microdomain—and influences the local [Ca2+]
experienced by other channels. For simplicity we assume that
the formation and collapse of individual peaks within the Ca2+

microdomain occurs quickly compared to channel gating. We
also assume the presence of a single high-concentration Ca2+

buffer and the validity of superposing local [Ca2+] increases
due to each of the N channels [35, 36]. Thus, channel
interactions can be summarized by an N×N ‘coupling matrix’
C = (cij ) that gives the increase over c∞ experienced by
channel j when channel i is open. The diagonal elements of C
represent the quantity denoted above as ‘domain [Ca2+]’ (cd),
the increase in [Ca2+] above background that an open channel
contributes to its own Ca2+ regulatory site [13]. For example,
in the case of two identical channels the Ca2+ coupling matrix
takes the form

C =
(

cd c12

c21 cd

)
,

where 0 < c12 = c21 < cd . See appendix A for further
discussion of how numerical values for these concentrations
are specified.

Note that the expanded generator matrix for two
coupled Ca2+-regulated Ca2+ channels has the Kronecker
representation Q(2) = Q

(2)
− + Q

(2)
+ , where

Q
(2)
− = K− ⊕ K− = K− ⊗ I + I ⊗ K− (4)

collects the unimolecular transition rates and ⊕ and ⊗ denote
the Kronecker sum and product, respectively (see chapter 9 in
[37]). The transition rates involving Ca2+ take the form

Q(2)
+ = D

(2)
1 (K+ ⊗ I ) + D

(2)
2 (I ⊗ K+) , (5)

where each term in the sum represents Ca2+-mediated
transitions for each channel. The diagonal matrices D

(2)
1

and D
(2)
2 give the [Ca2+] experienced by channels 1 and 2,

respectively, in every configuration of the release site. For
example, for channel 1,

D
(2)
1 = diag{c∞(e ⊗ e) + cd(eO ⊗ e) + c21(e ⊗ eO)}

= c∞(I ⊗ I ) + cd(IO ⊗ I ) + c21(I ⊗ IO),

where e is an M × 1 vector of ones. For example,
for two coupled three-state channels (figure 2(a)), the
transition rate associated with a C2O1 → O1O1 transition
is the (6, 9) entry of Q(2) given by k+

b (c∞ + c21)

when the release site states are ordered lexicographically,
S(2) = {C1C1, C1C2, . . . ,O1C2,O1O1}. This Ca2+-dependent
transition rate of channel 1 undergoing a C2 → O1 transition
(recall figure 2(a)) involves the background [Ca2+] (c∞) as
well as the concentration above background experienced by
channel 1 when channel 2 is open (c21). For two coupled six-
state channels (figure 2(b)), the O1O1 → O1R2 transition rate
is the (15,17) entry of Q(2) and is given by k+

d (c∞ + c12 + cd).
Using the Kronecker identities such as (I⊗IO)(I⊗K+) =

I⊗IOK+, equation (4) and (5) can be combined and rearranged
as

Q(2) = X∞ ⊕ X∞ + cd(IOK+ ⊗ I ) + c12(IO ⊗ K+)

+ c21(K+ ⊗ IO) + cd(I ⊗ IOK+), (6)

where X∞ = K− + c∞K+. The final four terms of this
expression are arranged so that the column in which a term
appears corresponds to the channel that is changing state
(and thus the placement of K+ in the left or right side
of the Kronecker product corresponding to channel 1 or 2,
respectively). Similarly, within a given column, there are two
terms in which the matrix IO takes every possible position
(determined by the row in which the term appears). Each of
these terms in a given column is contributing an increase in
the local [Ca2+] consistent with the context (open and closed
channels) in which the given channel is changing state. Such
compact Kronecker-structured representation is an example
of a stochastic automata network descriptor for two coupled
Ca2+-regulated Ca2+ channels [38].

2.2. SAN descriptor for N Ca2+-regulated Ca2+ channels

In the case of N channels coupled at the Ca2+ release site,
the expanded generator matrix—i.e., the SAN descriptor—is
given by

Q(N) =
N⊕

n=1

X∞ +
N∑

i,j=1

N⊗
n=1

Xn
ij , (7)

where X∞ = K− + c∞K+ as in equation (6) and

Xn
ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

IO for i �= j, i = n

cijK+ for i �= j, j = n

cdIOK+ for i = j = n

I otherwise.

(8)

Note that all states of the expanded Markov chain Q(N) are
reachable, the matrices I, IO and Xn

ij are all M × M , and
2N2 − N of the N3 matrices denoted by Xn

ij are not identity
matrices. The iterative solution methods discussed in the
following section utilize the SAN descriptor for N coupled
Ca2+-regulated Ca2+ channels given by equations (7) and (8).
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Table 1. State-space explosion for a Ca2+ release site with
NM-state channels, MN configurations, L(N) = NMN−1L(1)

transitions between configurations and Z(N) = NMN−1L(1) + MN

nonzero entries in Q(N), where L(1) is the number of transitions in
the single-channel model.

Three-state channel Six-state channel

N MN L(N) Z(N) MN L(N) Z(N)

1 31 4 7 61 12 18
3 33 108 135 63 1296 1512
7 37 20 412 22 599 67 3919 104 4199 040

19 319 2.94 × 1010 3.06 × 1010 619 2.32 × 1016 2.38 × 1016

3. Solution methods for large-scale Markov chains

The limiting probability distribution of a finite irreducible
CTMC is the unique stationary distribution π(N) satisfying
global balance [37], that is,

π(N)Q(N) = 0 subject to π(N)e(N) = 1, (9)

where Q(N) is the Ca2+ release site SAN descriptor for N
coupled channels (equations (7) and (8)) and e(N) is an
MN × 1 column vector of ones. Although Monte Carlo
simulation techniques, such as Gillespie’s method [39], can
be implemented to estimate response measures, such as
the distribution of the number of open channels (NO) and
the puff/spark Score (recall figure 1), this is an inefficient
approach when the convergence of the occupation measures
to the limiting probability distribution is slow. This problem
is compounded by the state-space explosion that occurs when
the number of channels (N) or number of states per channel
(M) is large (i.e., physiologically realistic). Table 1 illustrates
the state-space explosion for release sites composed of the
three- and six-state single-channel models of figure 2. Because
the model formulation (section 2) accounts for release site
ultrastructure (i.e., the spatial location of each channel), the
number of configurations of the Ca2+ release site grows by a
factor of M each time a channel is added, and when N is large
the storage requirements of explicitly forming the expanded
generator matrix Q(N) are excessive. Furthermore, the
occupation measures for the limiting probability distribution
are slow to converge and interpreting simulation results
involving MN release site configurations is difficult for large N.
Fortunately, both space requirements and quality of results can
be addressed using the Kronecker-structured representation
of equations (7) and (8)—i.e., the Ca2+ release site SAN
descriptor—in combination with various iterative numerical
methods that leverage its Kronecker structure to solve for π(N).

3.1. Exact numerical methods

Many methods are available to solve equation (9) with different
ranges of applicability (see [37] for review). For larger models,
a variety of iterative methods are applicable including the
power method (POWER) and the methods of Jacobi and Gauss–
Seidel, along with variants that use relaxation, e.g., Jacobi
with relaxation (JOR) and Gauss–Seidel with relaxation (SOR).
Such methods require space for iteration vectors and Q(N)

but usually converge quickly. More sophisticated projection
methods, such as the generalized minimum residual method
(GMRES) and the method of Arnoldi (ARNOLDI), have better
convergence properties but require more space. While the
best method for a particular Markov chain is unclear in
general, several options are available for exploration including
the iterative methods described above, which can also
be enhanced by preconditioning, aggregation–disaggregation
(AD) or Kronecker-specific multi-level (ML) methods [40, 41].

Due to multi-level (ML) method’s superior performance
in this context (see section 4) and their ability to leverage
the block structure that is naturally present in the Kronecker
representation [42], we will describe them in more detail
here. ML methods were inspired by multigrid methods
used to solve partial differential equations, as well as
aggregation/disaggregation techniques for the reduction of
Markov chains [43]. ML methods are iterative algorithms
defined on multiple levels of increasing coarseness through
which the solution process proceeds in cycles until a given
termination criterion is met. The levels are given by the
nested block structure of the generator matrix, with the blocks
defined implicitly by the Kronecker structure or explicitly
through partitioning (see figure 3). One moves from fine-
to-coarse and coarse-to-fine representations of the Markov
chain via aggregation and disaggregation, respectively, where
at each level of refinement an iterative method is implemented
(i.e., the ‘smoother’). One ML cycle consists of the recursive
traversal of these levels from the finest to the coarsest and
back. There are multiple implementations of ML methods,
with various places for variability: the type of cycle (V, W or
F), the type of smoother (e.g. JOR or SOR), the number of
iterations of the smoother at each level and the method of
selection for which automata (i.e., channels) to aggregate at
each stage, e.g., fixed (FIX), cyclic (CYC) or dynamic (DYN).
For comparisons of these implementations on a specific set
of examples, see below, [40] and the supplementary material
stacks.iop.org/PhysBio/5/036003.

Partitioning induces a block structure of the generator
matrix that can be useful in the implementation of both
exact and approximate methods. For exact methods, such
as the ML methods described above, this block structure
often suggests aggregation/disaggregation strategies that can
improve convergence times. Partitioning can also be
chosen consistent with response measures of interest, thereby
facilitating the use of these measures as convergence criteria.
For example, if we partition the three-state single-channel
model of figure 2(a) into closed and open states, the
resulting block structure facilitates efficient computation of
the performance measures dependent on the number of open
channels, such as the distribution of NO and the puff/spark
Score. As illustrated in figure 3(a), we can partition the states
of the three-state single-channel model S = {C1, C2,O1} using
the closed and open aggregate classes and write P = {C,O}
where C = {C1, C2} and O = {O1}. In the case of N three-
state channels, the induced partitioning on the expanded state-
space is a mapping of the 3N states s = s1s2 · · · sN ∈ S(N)

to one of the 2N partitions p = p1p2 · · ·pN ∈ P(N), where
S(N) and P(N) are the Cartesian products ×N

n=1S and ×N
n=1P ,

5
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(a) (b)

Figure 3. (a) Permutation of states and partition structure for N = 2 three-state channels under the closed/open partitioning strategy
P = {C,O}, where C = {C1, C2} and O = {O1}. The induced partitioning on S(2) is thus P (2) = {CC, CO,OC,OO}, with the states ordered
lexicographically in both S(2) and each partition. (b) Block structure of the expanded generator matrix Q(2) when permuted in this manner.
The thickness of the lines denotes the hierarchical structure of the partitioning.

respectively. In figure 3(b), lexicographical ordering of
partitions—i.e.,P(2) = {CC, CO,OC,OO}—and states within
each partition leads to a permuted generator matrix composed
of 16 blocks, with each block denoted by Q(2)[p, q]. Here
and in the general case (N > 2), the block Q(N)[p, q]
contains transitions from partition p to partition q with each
block having a Kronecker-structured representation similar to
equation (7).

More specifically, the diagonal blocks of the permuted
generator matrix Q(N)[p, p] that correspond to transitions
within each partition are given by

Q(N)[p, p] =
N⊕

n=1

X∞[pn, pn] +
N∑

i,j=1

N⊗
n=1

Xn
ij [pn, pn]. (10)

In this expression, each matrix X∞[pn, pn] contains the rows
and columns of X∞ corresponding to the states in pn (and
similarly for each Xn

ij [pn, pn]), where X∞ and Xn
ij are defined

in equation (8). For each off-diagonal block of the permuted
generator matrix Q(N)[p, q] (p �= q) that corresponds to a
transition between partitions, we write pn = qn for n �= k and
pk �= qk where k ∈ {1, 2, . . . , N} is the index of the channel
changing state. Using this notation, the nonzero off-diagonal
blocks of the permuted generator matrix can be written as

Q(N)[p, q] =
(

k−1⊗
n=1

I|pn|

)
⊗ X∞[pk, qk] ⊗

(
N⊗

n=k+1

I|pn|

)

+
N∑

i,j=1

N⊗
n=1

Xn
ij [pn, qn], (11)

where X∞[pk, qk]
(
Xn

ij [pn, qn]
)

contains the rows and
columns of X∞

(
Xn

ij

)
corresponding to the states in pk and

qk (pn and qn), |pn| denotes the size of partition pn and I|pn|
denotes a |pn| × |pn| identity matrix. Equations (10) and (11)
are an example of a hierarchical Kronecker representation (see
[44] for review).

3.2. Approximate numerical methods

The hierarchical Kronecker representation of equation (10)
can be used to realize approximate solution techniques

that often drastically reduce the computational effort while
introducing only small approximation errors. A promising
concept introduced in [45] is to represent components of the
iteration vector by Kronecker products of vectors of much
smaller dimension. Consistent with the hierarchical Kronecker
representation discussed above, the iteration vector π(N) is
partitioned into |P(N)| components (see figure 3(a)) and each
component is either represented in an exact manner (detailed
representation) or in an approximate manner (compositional
representation). The compositional representation of the
portion of π (dropping the superscript (N) for clarity)
corresponding to partition p, denoted by π[p], is given by

π[p] = αp

N⊗
n=1

πn
p (12)

where πn
p is a vector of dimension 1 × |pn| with elements

summing to unity and αp is a non-negative constant that
scales the probability mass of the π[p] in π such that∑

p∈P(N) αp = 1.
As mentioned above, a compositional representation such

as equation (12) is flexible in the sense that the user may choose
the partitions to be represented exactly versus approximately.
Alternatively, the choice of exact versus approximate
representation may be adjusted adaptively during the iterative
solution process, e.g., using a detailed representation for
those partitions that accumulate most of the probability mass
[45]. Perhaps most importantly, the partitioning strategy P
can significantly influence computational efficiency and the
quality of the approximation. For example, a partitioning
strategy that includes every state of the single-channel model
as a partition—e.g., P = {C1}{C2}{O1} for the three-state
model of figure 2(a)—leads to an induced partitioning P(N)

that maps every state of the Ca2+ release site model to
a distinct partition (i.e. π[p] = αp with πn

p = 1 in
equation (12)). This strategy results in no approximation
error, but unnecessarily increases both storage and run time
compared to an exact iterative method. In the other extreme,
a partitioning strategy that includes every state of the single-
channel model in one partition—e.g., P = {C1C2O1}—can
only result in low approximation error when the stationary
distribution of the Ca2+ release site model is well approximated
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Table 2. Benchmark calculations for 10 three-state channels computed using Linux PCs with dual-core 3.8 GHz EM64T Xeon processors
and 8 GB RAM solving equation (7). Description of solvers: JOR, Jacobi over-relaxation method; JOR AD, the method of Jacobi with
aggregation/disaggregation; ARNOLDI, the method of Arnoldi; BICGSTAB, the biconjugate gradient stabilized method; PRE ARNOLDI, the
method of Arnoldi with Neumann pre-conditioning; BSOR BICGSTAB, the biconjugate gradient stability method with block-successive
over-relaxation pre-conditioning; ML JOR F DYN, multi-level method with JOR smoother, F cycle and dynamic ordering.

Solver Max Res Sum Res CPU (s) Wall (s) Iters

JOR 9.49 × 10−13 5.16 × 10−12 279 279 1840
JOR AD 9.44 × 10−13 5.13 × 10−12 415 415 1550
ARNOLDI 2.42 × 10−13 4.04 × 10−11 214 215 1440
BICGSTAB 8.66 × 10−13 4.89 × 10−11 146 148 602
PRE ARNOLDI 8.62 × 10−15 1.82 × 10−12 26 27 160
BSOR BICGSTAB 8.22 × 10−15 5.29 × 10−13 19 19 52
ML JOR F DYN 5.87 × 10−13 1.68 × 10−10 15 15 46

by the Kronecker factorization π = ⊗N
n=1π

n. This is unlikely
because it implies that the N channels at the Ca2+ release site
are gating independently, i.e., not interacting via the buffered
diffusion of Ca2+. Below we identify and discuss optimal
partitioning strategies for both the three- and six-state models
of figure 2. In general, we find that more refined partitioning
leads to better approximation, but at the expense of storage
requirements and computational efficiency (see section 4.4).

3.3. Abstract Petri net notation (APNN) toolbox

A number of software tools are available that implement
methods for Kronecker representations. We selected the
Abstract Petri net notation toolbox [46] and its numerical
solution package Nsolve because of its rich variety of
numerical techniques for the steady-state analysis of Markov
chains. Nsolve provides more than 70 different iterative
numerical methods and allows the user to define SAN
descriptors of the form of equations (7) and (8) through ASCII
file input [46–49].

4. Results

4.1. Benchmarked exact methods

In order to investigate the numerical techniques that work best
in combination with the Kronecker representation of our Ca2+

release site models (equations (7) and (8)), we wrote a script
for the software environment MATLAB that takes a specific
Ca2+ release site model—defined by K+,K−,eO, c∞ and C
as defined in section 2—and produces the input files needed
to interface with Nsolve. Using release sites composed of 10
three-state channels (figure 2(a)), we performed a preliminary
study to determine which of the 70-plus numerical methods
implemented in Nsolve were compatible with equations (7)
and (8).

Table 2 lists seven solvers that converged in less
than 20 min CPU time with a maximum residual
‖π(N)Q(N)‖∞ less than 10−12 for a release site composed
of 10 three-state channels (see supplementary material
stacks.iop.org/PhysBio/5/036003 for additional results). For
each method we report the maximum residual when
convergence is achieved, the sum of the residuals
‖π(N)Q(N)‖1, the CPU and wall clock times (in seconds) and

the total number of iterations performed. Because randomly
selected channel positions (cf figure 1) have an impact on
the interaction matrix C, the generator matrix Q(N) and the
performance of solvers, the release site ultrastructure was
identical for each calculation and thus the rows of table 2
can be directly compared. We find that the traditional
Jacobi over-relaxation method (JOR) works well for this
problem with 310 = 59 049 states, but the addition of
aggregation/disaggregation (AD) steps is not particularly
helpful. The separable preconditioner (PRE) of Buchholz
[48] and the block SOR preconditioner (BSOR) are very
effective and help to reduce solution times to less than 50 s
for several projection methods including ARNOLDI and the
biconjugate gradient stability method (BICGSTAB). A multi-
level (ML) solver with a JOR smoother, DYN ordering and F
cycle gives the best results [40, 41].

4.2. Scalability of exact methods

In the previous section we benchmarked the efficiency
of several different algorithms that can be used to solve
for the stationary distribution of Ca2+ release site models.
To determine how these results depend on problem
size, we chose representatives of four classes of solvers
(JOR, PRE ARNOLDI, BSOR BICGSTAB and ML JOR F DYN)
that worked well for release sites composed of 10 three-state
channels (see table 2). Using these four solvers, figure 4 shows
the wall clock time required for convergence (‖π(N)Q(N)‖∞ <

10−12) as a function of the number of channels (N) for both the
three- and six-state models (circles and squares, respectively).
Because the N channels in each Ca2+ release site simulation
have randomly chosen spatial positions that may influence
the time to convergence, figure 4 shows both the mean and
standard deviation (error bars) of the wall clock time for five
different release site configurations. Note that for each value
of N in figure 4, the radius of each Ca2+ release site was chosen
so that stochastic Ca2+ excitability was observed.

Figure 4 shows that the time until convergence is shorter
when the Ca2+ release site is composed of three-state as
opposed to six-state channels regardless of the numerical
method used (compare circles to squares). Consistent
with table 2 we find that for large values of N the
ML JOR F DYN (black) method requires the least time, followed
by BSOR BICGSTAB (dark gray), PRE ARNOLDI (light gray) and
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Figure 4. Circles and error bars show the mean ± SD of wall clock
time for five release site configurations of the three-state model
(figure 2(a)) using: JOR (white), PRE ARNOLDI (light gray),
BSOR BICGSTAB (dark gray) and ML JOR F DYN (black). Squares
and error bars give results for the six-state model (figure 2(b)).
Single-channel parameters as in figure 2. Calculations performed
using 2.66 GHz dual-core Intel Xeon processors and 2 GB RAM.
Reproduced with permission from [50].

finally JOR (white). Though there are important differences
in the speed of the four solvers, the wall clock time until
convergence is proportional to the number of states M in a
single-channel model, that is, the slope of each line in figure
4 for M = 6 is nearly double that of the corresponding lines
when M = 3.

We also found substantial differences in the amount of
memory needed to run those solvers (not shown). While
simple methods like JOR allocate space mainly for a few
iteration vectors, Krylov subspace methods like ARNOLDI use
more vectors (20 in the default Nsolve configuration) and this
can be prohibitive for large models. For projection methods
such as BICGSTAB that operate on a fixed and small set of
vectors, we observe that the space for auxiliary data structures
and vectors is on the order of seven to ten iteration vectors
for these models. In general, we find that the iterative
numerical methods that incorporate pre-conditioning (e.g.,
PRE ARNOLDI and BSOR BICGSTAB) are quite fast compared to
more traditional relaxation techniques such as JOR. However,
the power of pre-conditioning is only evident when problem
size is less than some threshold that depends upon memory
limitations. On the other hand, multi-level (ML) methods are
constructed to take advantage of the Kronecker representation
and to have very modest memory requirements. This is
consistent with our experiments that indicate ML methods have
the greatest potential to scale well with problem size (black
symbols in figure 4), whether that be an increase in the number
of channels (N) or the number of states per channel (M).

4.3. Exact methods versus Monte Carlo simulation

Although there may be problem size limitations, we expected
that the stationary distribution of our Ca2+ release site models
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Figure 5. Convergence of response measures for a release site
composed of 10 three-state channels using ML JOR F DYN and
Monte Carlo (filled and open symbols, respectively). Circles and
squares give 1- and ∞-norms of the residual errors, upper pointing
triangles give the relative error in the puff/spark Score for Monte
Carlo (mean of 50 simulations shown) compared with the Score
given by ML JOR F DYN upon convergence. Similarly, the lower
pointing triangles give the relative error in the probability that all N
channels are closed. Parameters as in figure 1. Reproduced with
permission from [50].

could be found more quickly using iterative methods than
Monte Carlo simulation. This is confirmed in the convergence
results of figure 5 using a release site composed of 10 three-
state channels, the multi-level solver ML JOR F DYN (filled
symbols) and Monte Carlo simulation beginning with all N
channels in state C1 that averaged 1260 transitions per second
(open symbols).

The open squares and circles of figure 5 show the
maximum and sum of the residuals (‖π(N)Q(N)‖∞ and
‖π(N)Q(N)‖1, respectively) averaged over 50 simulations.
As expected, the residuals associated with the Monte Carlo
simulations converge much slower than those obtained with
ML JOR F DYN. Interestingly, figure 5 shows that even
coarse response measures can be more quickly obtained using
numerical iterative methods than Monte Carlo simulation.
In the Monte Carlo simulations, the relative errors of
the puff/spark Score (upwards pointing triangles) and the
probability that all N channels were closed (downwards
pointing triangles) converge at essentially the same rate as
the maximum residual error ‖π(N)Q(N)‖∞ (open squares).

4.4. Benchmarked approximate methods

In sections 4.1–4.3 we identified several exact solvers that
perform well when using the SAN descriptor (equations (7)
and (8)) to solve for the stationary distribution of a Ca2+

release site model. However, we have found that these
techniques are not applicable when the number of states in the
release site model (MN) becomes large and so it is necessary
to consider approximate methods and various partitioning
strategies (recall section 3.2). The APNN toolbox contains
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Table 3. Optimal partitioning strategies listed with their relative errors and memory requirements for both N = 3 three- and six-state
channels with states S = {C1, C2,O1} and S = {C1, C2,R1,R2,R3,O1}, respectively (see figure 2). The last column also lists relative
memory requirements for larger N used in section 4.6. For the three-state model, the optimal P is the best of 1, 3, 1 possibilities when |P| =
1, 2, 3. For the six-state model, the optimal P is the best of 1, 31, 90, 65, 15, 1 possibilities when |P| = 1, 2, 3, 4, 5, 6.

|P| Optimal P for the three-state model επ εscore ν(3) ν(12)

1 {C1C2O1} 1.66 9.38 × 10−1 3.33 × 10−1 6.77 × 10−5

2 {C1C2}{O1} 5.40 × 10−3 3.50 × 10−3 1.33 1.39 × 10−1

3 {C1}{C2}{O1} 6.00 × 10−8 4.38 × 10−9 3.00 1.20 × 101

|P| Optimal P for the six-state model επ εscore ν(3) ν(8)

1 {C1C2R1R2R3O1} 4.84 × 10−1 5.40 × 10−1 8.30 × 10−2 2.86 × 10−5

2 {C1C2R1R2R3}{O1} 3.50 × 10−2 1.36 × 10−2 3.33 × 10−1 3.70 × 10−3

3 {C1C2}{R1R2R3}{O1} 7.10 × 10−3 5.50 × 10−3 7.50 × 10−1 6.25 × 10−2

4 {C1}{C2}{R1R2R3}{O1} 1.90 × 10−4 7.60 × 10−6 1.33 4.68 × 10−1

5 {C1}{C2}{R1R2}{R3}{O1} 5.07 × 10−7 4.12 × 10−8 2.08 2.23
6 {C1}{C2}{R1}{R2}{R3}{O1} 4.21 × 10−8 4.16 × 10−8 3.00 8.00

an implementation of only one approximate method, namely
APP POWER, with its iterative engine based on the power
method (POWER). In this section we perform a preliminary
study using APP POWER on N = 3 channels to evaluate the
5 possible partitioning strategies for the three-state single-
channel model of figure 2(a) and the 203 possible partitioning
strategies for the six-state model of figure 2(b).

For the three-state model the minimum number of
partitions is |P| = 1 and the maximum number of partitions
is |P| = 3, and in both cases there is only one possible
partitioning strategy (see the first column of table 3). Three
partitioning strategies are possible when |P| = 2 including
P = {C1C2}{O1}, {C1}{C2O1} and {C1O1}{C2}, the first of
which we found to be optimal in the sense of having minimum
relative error for both the full stationary distribution (επ ) and
the puff/spark Score (εscore). Table 3 also shows the amount
of memory required by the approximate method to store π(N)

when each partitioning strategy is employed. For clarity this
is presented as a relative quantity,

ν(N) = ZA

ZE

= N

( |P|
M

)N−1

,

where M is the number of states in the single-channel model,
N is the number of channels at the release site and ZA =
NM|P|N−1 and ZE = MN are the memory requirements
for the approximate and exact methods, respectively. As
suggested in section 3.2, the maximum number of partitions
(|P| = 3) would not be used in practice because it would yield
results equivalent to an exact method but require more storage
(ν(N) > 1). The minimum number of partitions (|P| = 1)
would not be used because of excessive error (επ and εscore

large). However, for a large number of channels (e.g., N = 12)
and the optimal |P| = 2 partitioning strategy P = {C1C2}{O1},
the relative memory requirement of the approximate method
and approximation errors are acceptable (ν(12) = 0.14, επ =
0.0054 and εscore = 0.0035). Interestingly, the optimal |P| =
2 partitioning strategy associates the two closed states of the
single-channel model and isolates the open state. This makes
intuitive sense given the central role of the closed and open
aggregated classes of states in the coupling of channels in the
Ca2+ release site model (recall section 2).

Table 3 shows the results of a similar study of partitioning
strategies for N = 3 six-state single-channel models. In
this case there are 203 possible partitioning strategies and
the best of the 31 possible |P| = 2 strategies is P =
{C1C2R1R2R3}{O1}. Again, we find the optimal |P| =
2 strategy partitions closed and open states of the single-
channel model and, interestingly, the optimal |P| = 3
strategy separately partitions closed and refractory states,
P = {C1C2}{R1R2R3}{O1}. While states C1, C2,R1,R2 and
R3 are similar in that channels in these states do not increase
the [Ca2+] experienced by neighboring channels, including
all the refractory states in one partition may work well because
the sojourn time in states R1,R2 and R3 is 3–300 times longer
than the sojourn time in states C1 and C2 (see appendix C).

4.5. Error in approximate methods

In table 3 we identified the optimal partitioning strategies for
N = 3 coupled three- and six-state channels. To determine
if these results generalize for larger problems, we tested the
accuracy of several different partitioning strategies for Ca2+

release sites with N = 12 three-state channels or N = 8 six-
state channels. In both cases we consider the optimal |P| =
2 partitioning strategy that separates closed and open states.
This will be denoted below by C/O where it is understood that
this refers to P = {C1C2}{O1} for the three-state model and
P = {C1C2R1R2R3}{O1} for the six-state model. In the case
of the six-state model we also evaluate the optimal |P| = 3
partitioning strategy P = {C1C2}{R1R2R3}{O1} (denoted by
C/R/O). We focus on these strategies because they perform
well for N = 3 (see table 3). But as discussed above, these
strategies are consistent with salient properties of these single-
channel models (e.g., two conductance levels and, in the case
of the six-state model, fast Ca2+ activation and slow Ca2+

inactivation).
Using N = 12 three-state channels, figure 6(a) shows

the probability distribution of the number of open channels
(rightmost panel) calculated exactly using the high-performing
multi-level method ML JOR F DYN (black bars) described in
sections 3.1 and 4.1. Figure 6(a) also shows the probability
distribution of NO calculated approximately using the method
APP POWER with the C/O partitioning strategy (white bars)
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Figure 6. (a) Statistics for a release site composed of 12 three-state channels. Left: local [Ca2+] near 3 × 3 µm2 ER membrane modeled as
in figure 1. Middle: localized Ca2+ elevations reminiscent of Ca2+ puffs/sparks. Right: probability distribution of the number of open
channels calculated exactly using ML JOR F DYN (black bars) and approximately using APP POWER with C/O partitioning (white bars). (b)
Statistics as in (a) for 8 six-state channels with black bars denoting ML JOR F DYN and white and grey bars denoting APP POWER with C/O
and C/R/O partitioning, respectively.

as described in sections 3.2 and 4.4. A similar study using
N = 8 six-state channels is shown in figure 6(b) where
black, white and gray bars show results obtained by the exact
ML JOR F DYN method, APP POWER with the C/O partitioning
strategy and APP POWERwith the C/R/O partitioning strategy,
respectively. For the three-state model with no refractory
states, the C/O partitioning strategy well approximates the
exact results (compare black and white bars in figure 6(a));
however, this relatively coarse level of partitioning does not
perform as well for the six-state model with three refractory
states (compare black and white bars in figure 6(b)). For
the six-state model we find that the finer partitioning strategy
C/R/O results in a better approximation of the steady-state
distribution of NO (compare black and gray bars).

4.6. Scalability of approximate methods versus Monte Carlo
simulation

In the previous section, we showed that for N = 8 six-state
channels the accuracy of the APP POWER method improves
with more refined partitioning when the response measure of
interest is the probability distribution of the number of open
channels. While the C/R/O partitioning strategy performed
well in its approximation of this particular response measure,
its practical value depends on the time to convergence in
comparison to exact calculation. Figure 7(a) shows the wall
clock time required for the convergence of π(N) as a function
of the number of channels (N) for the six-state single-channel
model. Convergence is achieved when

max
p∈P(N)

max
n

∥∥πn
p,l − πn

p,l−1

∥∥
∞ � 10−8,

where πn
p,l is the lth iterate of the nth factor of partition

π[p] in equation (12). As expected, figure 7(a) shows that
results obtained using the approximate method APP POWER and
C/O partitioning converge faster than those assuming C/R/O
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Figure 7. (a) Filled and open symbols show the wall clock time for
the six-state model using approximate and exact methods,
respectively. Approximate results are shown for two levels of
partitioning (C/O, squares and C/R/O, circles) with the APP POWER
method. Exact solutions are calculated using the POWER method
(squares) and the ML JOR F DYN method (circles). (b) Results as in
(a) with open symbols corresponding to the Monte Carlo estimates
of two coarse response measures: the distribution of the number of
open channels (circles) and the distribution of probability across the
M states of an arbitrarily selected individual channel (squares). The
dashed line shows the projected performance of an approximate
multi-level solver that uses ML JOR F DYN rather than POWER as its
iterative engine.

partitioning for all N considered (compare filled squares to
filled circles); however, we expect the |P| = 3 partitioning
to give a better approximation than the |P| = 2 partitioning
(recall figure 6(b)). Figure 7(a) also shows the convergence
time of the exact ML JOR F DYN method (open circles) and
the exact POWER method (open squares). Although POWER was
excluded from table 2 due to slow convergence, it is appropriate
to compare the convergence times of APP POWER and POWER
because the methods have similar iterative engines. While the
extra overhead in using APP POWER with C/R/O partitioning
slows its convergence for small problem size relative to the
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exact POWER method, the approximate method becomes faster
than its exact counterpart when the release site has N � 5
channels. In general, we find that approximate methods have
potential to scale well with problem size; the slopes of these
curves appear to be related to the partitioning refinement (i.e.,
|P| = 2, 3), whereas the exact method curves have slopes
proportional to the size of the single-channel model (M = 6).
Figure 7(b) compares the wall clock times for the approximate
APP POWERmethod (closed symbols as in figure 7(a)) to Monte
Carlo simulation (open symbols) where measures of interest
are the probability distribution of the number of open channels
(circles) and the distribution of probability across the M = 6
states of an arbitrarily selected individual channel (squares).
For equitable comparison, the Monte Carlo calculations were
terminated when the confidence intervals for each bin in
a particular distribution fell below the average residual bin
error of APP POWER (determined by comparison to the exact
ML JOR F DYN result). Figure 7(b) shows that when the
release site is composed of N < 8 channels the APP POWER
method with C/R/O partitioning (filled circles) converges
more quickly than Monte Carlo calculations. However, it
appears that for the response measures considered here the
time required for Monte Carlo estimates scales better for
larger problem sizes (compare open square to filled circle at
N = 8). When a finer measure is desired (e.g., the entire
stationary distribution π(N)), we would expect APP POWER to
outperform Monte Carlo simulation even when N is large (see
the conclusions).

5. Conclusion and outlook

We have presented a Kronecker-structured representation
for Ca2+ release sites composed of Ca2+-regulated Ca2+

channels under the assumption that these channels interact
instantaneously via the buffered diffusion of intracellular Ca2+

(section 2). Because informative response measures such as
the puff/spark Score can be determined if the steady-state
probability of each release site configuration is known, we have
identified iterative numerical solution techniques that perform
well in this biophysical context.

While the benchmark stationary distribution calculations
presented here all utilize the Kronecker structure of the Ca2+

release site SAN descriptor, we find significant performance
differences among iterative solution methods (table 2). When
it is possible to obtain an exact solution, multi-level methods
provide excellent convergence with modest additional memory
requirements for the Kronecker representation. When
the available main memory permits, BSOR-preconditioned
projection methods such as TFQMR and BICGSTAB are also
effective, as is the method of Arnoldi combined with a
simple preconditioner. In case of tight memory constraints,
the Jacobi and Gauss–Seidel iterations are also possible (but
slower). When these numerical iterative methods apply, they
outperform our implementation of Monte Carlo simulation for
estimates of response measures such as the puff/spark Score
and the probability distribution of the number of open channels
(figure 5).

Using the approximate method APP POWER, we
determined the optimal partitioning strategy for a given
number of partitions (|P| = 1, 2, 3, . . .). As shown in
table 3, the optimal partitioning strategy for |P| = 2 or 3
is often one of the two intuitive groupings of states: C/O or
C/R/O. Using these partitioning strategies, the approximate
method APP POWER shows better scalability than the exact
methods (figure 7(a)). In particular, APP POWER with C/R/O
partitioning has sufficient accuracy and competitive runtime
compared to its exact counterpart POWER.

While Monte Carlo simulation shows better scalability
for the convergence of specific coarse response measures,
APP POWER is preferred for problems of modest size (N �
7). Figure 7(b) also suggests that an approximate method
will outperform Monte Carlo when finer response measures
such as the full stationary distribution are desired. For
a release site composed of NM-state channels, the Monte
Carlo estimates of the stationary distribution require storage
for MN states, while the approximate method only stores
NM|P|N−1 entries in its approximate representation of the
stationary distribution, where |P| is the number of partitions.
Given this storage savings for large problems and the
scalability of APP POWER relative to its exact counterpart
(POWER), our results suggest that a promising avenue of
future research is the implementation of an approximate
method with a multi-level solver as its iterative engine.
Because the convergence time of ML JOR F DYN is several
orders of magnitude faster than APP POWER (figure 7(a)), an
approximate multi-level solver could potentially outperform
the Monte Carlo estimates of course response measures for
the problem sizes considered here as well as larger N (see
dashed line in figure 7(b)). Also, since single-channel models
of IP3R s and RyRs can be significantly more complicated
than the three- and six-state models that are the focus of
this paper, development of an approximate multi-level solver
would represent an important contribution to the numerical
analysis of the stochastic gating of instantaneously coupled
Ca2+-regulated Ca2+ channels. Finally, since some puff and
spark statistics—such as puff/spark duration and inter-event
interval distributions—cannot be determined from π(N), it
is also important to determine if transient analysis can be
accelerated using the Kronecker structure of the Ca2+ release
site SAN descriptor (equations (7) and (8)).

The focus of this paper is the development of
computationally efficient methods for stationary distribution
calculations when channel positions are explicitly modeled.
As shown in figure 1 and prior work [32], simulated Ca2+

puffs and sparks can be sensitive to the details of release
site ultrastructure, and the exact and approximate numerical
solution methods benchmarked here are appropriate in this
situation. For Ca2+ release site models that are insensitive
to channel position, one may perform mean-field calculations
that do not account for the details of release site ultrastructure,
provided the method maintains a distinction between each
channel’s substantial influence on its own stochastic gating and
the collective contribution of elevated [Ca2+] from neighboring
channels [13, 32]. In this manner, the state-space for a Ca2+

release site composed of NM-state channels can be reduced
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from MN to (M + N − 1)!/N!/(M − 1)! (cf table 1). The
identification of structured representations for release sites
composed of mean-field coupled channels is an important topic
for further research.

As mentioned above, single-channel models of IP3R s and
RyRs can be significantly more complicated than the three- and
six-state models that are the focus of this paper. For example, a
recent IP3R model includes 14 states, 6 of which are open [51],
and the well-known De Young–Keizer IP3R model includes 4
eight-state subunits for a total of 330 distinguishable states
[52]. Unfortunately, we are currently unable to benchmark
exact numerical solution methods for these more complex
and realistic models (cf figure 4), because the state-space
explosion for such Ca2+ release sites is overwhelming for
large M (see table 1). Although beyond the scope of this
paper, it might be possible to develop a SAN descriptor similar
to equations (7) and (8) in which the elementary matrices
K− and K+ correspond to a single channel subunit (thereby
reducing M and increasing N). However, it is unclear whether
iterative approximate numerical solution methods that utilize
such a Kronecker representation would be more efficient than
methods using the SAN descriptor presented here. In any
case, development of an approximate multi-level solver (as
discussed above) appears to be an important preliminary step
in the development of numerical solution methods that can
outperform Monte Carlo estimates for release sites composed
of complex single-channel models.
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Appendix A. Buffered diffusion of Ca2+ and the
coupling matrix

To specify the values of the N-by-N coupling matrix C, we
assume channels are localized on a planar ER membrane (z =
0). If we write ri = xi x̂ + yi ŷ as the position of the pore of
channel i, then assuming one high-concentration Ca2+ buffer,
the local [Ca2+] at position r = xx̂ + yŷ + zẑ given by the
‘steady-state excess buffer approximation’ is [53, 36]

c(r) = c∞ +
∑

i

σi

2πD|ri − r| e−|ri−r|/λ, (A.1)

where σi is the source amplitude of channel i and λ is the buffer
length constant. If we assume identical source amplitudes,

σi(t) =
{

0 channel i closed
σO channel i open,

and write aj as the position of the Ca2+ regulatory site for
channel j , the increase in Ca2+ experienced by channel j

when channel i is open is given by

cij = σO

2πD|ri − aj | e−|ri−aj |/λ.

Assuming the regulatory sites are located a small distance rd

above the channel pores, we write aj = xj x̂ + yj ŷ + rd ẑ and
rij = |ri−aj |, so rjj = |rj −aj | = rd . Thus, the off-diagonal
elements of the coupling matrix C = (cij ) are

cij = σO

2πDrij

e−rij /λ (i �= j), (A.2)

and the diagonal elements of C are identical and given by

cii = cd = σO

2πDrd

e−rd /λ. (A.3)

Note that rij = rji implies that the interaction matrix is
symmetric (cij = cji).

Appendix B. Instantaneous coupling and
superposition of Ca2+-mediated interactions

Throughout this paper we assume that the formation and
collapse of Ca2+ microdomains is fast compared to channel
gating. This assumption allows specification of the Ca2+

concentration experienced by the Ca2+-regulatory site of each
channel as an instantaneous function of the state of the release
site (see appendix A). For simplicity, we use the ‘excess buffer
approximation’ to determine these local Ca2+ concentrations,
but other representations of Ca2+ buffering could be employed
(for review, see [36]).

The SAN descriptor for N coupled Ca2+-regulated Ca2+

channels given by equations (7) and (8) assumes that Ca2+-
mediated interactions between channels can be superposed,
that is, the local [Ca2+] experienced by channel j can be
written as c∞ +

∑
i γicij , where c∞ is the background [Ca2+],

cij is the increase in [Ca2+] experienced by channel j when
channel i is open (e.g., equations (A.2) and (A.3)) and
γi = 0 or 1 when channel i is closed or open, respectively.
This superposition of Ca2+-mediated interactions occurs when
the partial differential equations representing the buffered
diffusion of intracellular Ca2+ are linear, as is the case for
the excess buffer approximation [35, 54, 36].

While the time-scale of domain formation is extremely
rapid (microseconds), the slower time-scale for domain
collapse (tens of milliseconds) can lead to slow Ca2+ feedback
on channel gating that is not represented in Ca2+ release site
models that assume instantaneous coupling [22, 55]. Even
when the formation and collapse of the Ca2+ microdomain is
not fast compared to channel gating, instantaneous coupling
may be assumed for convenience, so long as it is understood
that this formalism may distort the relationship between
single-channel kinetics and the stochastic dynamics of Ca2+

release sites. When release site ultrastructure is important
and instantaneous coupling is not assumed, the exact and
approximate numerical solution methods discussed in this
paper do not apply, and stationary distributions must be
estimated in a conventional fashion using Monte Carlo
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simulation (see, e.g. [14]). In the case of mean-field coupled
channels, the probability density of domain [Ca2+] jointly
distributed with the state of the release site can be calculated
directly as the steady state of a system of advection–reaction
equations (a master equation) [22]. Using bivariate densities
this approach can be extended to account for the effect of
luminal depletion on the stochastic dynamics of Ca2+ release
sites [55]. However, it is unclear if the Ca2+ release site
SAN descriptor (equations (7) and (8)) and the exact and
approximate numerical solution methods investigated in this
paper could be used to accelerate calculations for which
instantaneous coupling is not assumed.

Appendix C. The topology of the six-state model

The topology of the six-state model in figure 2(b) is derived
from a two-subunit Ca2+ channel model that includes both
fast Ca2+ activation and slower Ca2+ inactivation. Individual
subunits are assumed to have topology

C �̇ O �̇ R (C.1)

where · denotes a Ca2+ binding step and C,O and R represent
closed, permissive and refractory (i.e., long-lived closed)
states, respectively. Expanding to obtain the topology of a
two-subunit channel yields

CC �̇ CO �̇ CR
· �� �� ·
OO �̇ OR �̇ RR

(C.2)

where Ca2+ binding steps are denoted as above. Because
we assume identical (but not independent) subunits we may
lump equivalent states—e.g., CO and OC—leading to the six
distinguishable states shown in equation (C.2). The six-state
model shown in figure 2(b) is produced by identifying each of
the six states of equation (C.2) as closed, open or refractory,

C1 �̇ C2 �̇ R1

· �� �� ·
O1 �̇ R2 �̇ R3

(C.3)

where we have assumed that both subunits must be in the
permissive state for the channel to be open and, consequently,
OO = O1 is the only open state. While the remaining states
are not open, we designate states CC = C1 and CO = OC = C2

as closed and CR = RC = R1,OR = RO = R2 and
RR = R3 as refractory because the sojourn time in states
R1,R2 and R3 is over three times longer than the sojourn
time in states C1 and C2 at the background [Ca2+] of c∞ =
0.05 µM. This separation of times scales is even larger at
the higher [Ca2+] experienced in a Ca2+ release site when
neighboring channels are open.
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