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Abstract

We explore the effect of correlations between the in- and out-degrees
of random directed networks on the synchronization of identical pulse-
coupled oscillators. Numerical experiments demonstrate that the propor-
tion of initial conditions resulting in a globally synchronous state (prior
to a large but finite time) is an increasing function of node-degree correla-
tion. For those networks observed to globally synchronize, both the mean
and standard deviation of time to synchronization are decreasing functions
of node-degree correlation. Pulse-coupled oscillator networks with nega-
tively correlated node degree often exhibit multiple coherent attracting
states, with trajectories performing fast transitions between them. These
effects of node-degree correlation on dynamics of pulse-coupled oscillators
are consistent with aspects of network topology (e.g., the effect of node-
degree correlation on the eigenvalues of the Laplacian matrix) that have
been shown to affect synchronization in other contexts.

1 Introduction

Synchronization is ubiquitous in the biological sciences. In phenomena as diverse
as the synchronization of cortical neurons leading to gamma oscillations [4] and
gene regulatory networks in populations of quorum sensing bacteria [15], both
how the oscillators are coupled—i.e., the network structure—and the dynamics
of the oscillators themselves, determine whether or not global synchronization
occurs. One of the most extensively studied model systems for synchronization
are the phase equations originally proposed by Kuramoto [22, 33, 1]. Interac-
tions between Kuramoto oscillator phases occur continuously and the resulting
dynamics correspond to the long-term behavior of weakly-coupled identical limit
cycle oscillators.

Analysis of Kuramoto oscillators has addressed many questions regarding
network structure and synchronization. Results established in the infinite-N
case with all-to-all coupling have elucidated the critical coupling value for the
onset to partial synchronization and the stability of the partially coherent and
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fully coherent states [1]. Restrepo et al [27, 30] have considered the finite-N
case with more complex network topologies, including directed networks, and
established an approximate location for the critical coupling strength and local
properties of the bifurcating branch. Jadbabaie et al. [19] have shown the exis-
tence of another critical coupling strength beyond which a global synchronous
state exists, with its stability given by the eigenvalues of the Laplacian matrix.

Another well-studied model system for synchronization is pulse-coupled os-
cillators with interactions mediated by instantaneous events with finite magni-
tude [23, 16, 34]. Although not as realistic as integrate-and-fire or Hodgkin-
Huxley-style network models, pulse-coupled oscillators are regarded as a rea-
sonable starting point for the study of neural synchronization. While phase-
response curves of realistic neuronal models have been well-studied, and syn-
chronization of pulse-coupled oscillators have been explored in a neural context
[16, 21], comparatively few studies have considered how details of network struc-
ture may influence the properties of synchronization of pulse-coupled oscillators
[16, 18, 34].

This paper is focused on how a particular aspect of network structure known
as “node-degree correlation” (see Sec. 2.1) affects the dynamics of synchroniza-
tion of identical pulse-coupled oscillators. This question is timely because dual
intracellular recording and other experimental approaches can provide data on
the local connectivity of neuronal networks [26, 4, 24, 13].

2 Model formulation

We consider a population of N pulse-coupled oscillators [23] with interconnec-
tivity given by the adjacency matrix of a directed graph, i.e., an N ×N matrix
A such that

Aij =

{

1 if i → j
0 otherwise,

where i → j indicates that oscillator i can affect the dynamics of oscillator
j. While synchronization has been most extensively studied in the context of
all-to-all coupled networks (Aij = 1) and networks with reciprocal interactions
represented by undirected graphs (Aij = Aji) [3, 10, 16], simulation and analysis
of synchronization on networks represented by directed graphs are not without
precedent [30, 37, 34, 19]. In this context of pulse-coupled oscillators, it is
convenient to assume no self-interactions (Aii = 0).

2.1 Network topology and node-degree correlation

Let the ordered pair di = (d out
i , d in

i ) denote the out- and in-degree of the i-th

oscillator, that is, d out
i =

∑N
j=1 Aij is the number of oscillators j such that

i → j and, similarly, d in
i =

∑N
j=1 Aji is the number of oscillators j such that

j → i. The node-degree correlation [31] of a finite network can be quantified in
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several ways, perhaps most intuitively using the Pearson correlation coefficient

ρ =
1

N

N
∑

i=1

(

d out
i − µ out

σ out

)(

d in
i − µ in

σ in

)

(1)

where µ out and σ out are the mean and standard deviation of the out-degree
over the population of nodes (similarly for µ in and σ in). For example, Fig. 1(a)
and (b) show two networks with N = 6 nodes and degree sequences given by

(a) {(3, 3), (3, 3), (3, 3), (1, 1), (1, 1), (1, 1)}
(b) {(3, 1), (3, 1), (3, 1), (1, 3), (1, 3), (1, 3)}

. (2)

While these two networks are similar in many ways (e.g., both have 12 edges),
network (a) has a positive node-degree correlation because the Pearson correla-
tion coefficient (Eq. 1) of it’s degree sequence evaluates to ρ = 1, while network
(b) has a negative node-degree correlation (ρ = −1).

(a) (b)
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Figure 1: Example networks with positively (a) and negatively (b) correlated
node degree. Degree sequences as in Eq. 2.

Note that the node-degree correlation of a directed network is distinct from
the concept of assortativity, which in the context of undirected graphs is es-
sentially the Pearson correlation coefficient of the degrees of pairs of connected
nodes (sometimes referred to as edge-degree correlation [31]). Although mea-
sures of assortativity can be defined for directed networks using the in- and
out-degree of nodes connected by a directed edge [38], the random networks
that are the focus of this study have a wide range of node-degree correlations
with negligible edge-degree correlations.

2.2 Pulse-coupled oscillators

Following [18, 23] and assuming identical intrinsic frequencies, the population
of N pulse-coupled oscillators satisfies the phase equations

dφi

dt
= 1, for i = 1, . . . , N (3)
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where φi ∈ [0, 1]. Without loss of generality units of time are chosen so that
the natural period of each oscillator is unity. The i-th oscillator ‘fires’ when
its phase φi attains the threshold φth = 1. When this occurs, the phase of the
i-th oscillator is reset (φi 7→ 0) and the phases of oscillators along outgoing
connections (j such that i → j) are advanced according to

φj 7→ φj +

{

∆(φj) for Aij = 1
0 otherwise

(4)

where j 6= i. We will consider three phase response curves (PRCs) ∆(φ) –
periodic on the interval [0, 1] – given by

(a) ∆(φ) = ǫφ,
(b) ∆(φ) = ǫαθ[sin(2πφ + θ) − sin θ],
(c) ∆(φ) = ǫαλφ(1 − φ)eλφ,

(5)

where 0 ≤ θ < 2π, λ ≥ 0, and αθ and αλ are normalization constants chosen so

that
∫ 1

0
∆(φ) dφ = ǫ ≪ 1. Unless otherwise noted, ǫ is given by

ǫ =
k

µ in
(6)

where k = 0.1 and µ in = 1
N

∑N
i=1 d in

i is the mean in-degree. This scaling is nat-
ural for comparison across networks with different topologies, because the phase
advance of the i-th oscillator with a characteristic number of incoming neighbors
(j such that j → i) does not depend on the network’s degree distribution when
these µ in neighbors fire simultaneously.

0  0.5 1  

−2

−1

0

1

2

0  0.5 1  
0

1

2

3

4

(a) (b)

φ φ

� θ ≈ 4π
3

� θ ≈ 2π
3

@
@R

λ = 3.5

θ-family λ-family

Figure 2: The θ- and λ-family of phase response curves (PRCs) (see Eq. 5). Solid
and dashed lines denote curves leading to a stable and unstable synchronous
state, respectively, in the case of all-to-all coupling. The significance of the
labelled curves and arrows is discussed in Sec. 3.3.

The phase response curves in Eq. 5 have been chosen for different reasons.
PRC 5(a) is the simplest type of excitatory interaction between oscillators that
leads to a globally synchronous state for the case of all-to-all connectivity 1.

1Though not as physiologically relevant as the θ- and λ-family of PRCs, the linear PRC
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Numerical experiments with PRC 5(a) show the synchronous state is stable for
network topologies that are the focus of this paper (not shown). PRCs 5(b)
(θ-family) and 5(c) (λ-family) are more relevant physiologically and satisfy

∆(0) = lim
φ→1−

∆(φ) = 0

as discussed in [16] (see Fig. 2). The θ-family is similar to the PRCs for the
quadratic integrate-and-fire neuron model and radial isochron clock, the latter
of which includes regions of phase advance and delay. The λ-family was used in
[16] to fit experimentally observed cortical neuron PRCs that are strictly phase
advancing [32].

Note that the governing equations for the population of pulse-coupled oscil-
lators used here (Eqs. 3–6) are a special case of the more general form

dφi

dt
= f(φi) +

N
∑

j=1

AjiΓ(φi, φj) (7)

that can be equated by choosing f(φi) = 1, Γ(φi, φj) = h(φj)∆(φi), and h(φj) =
δ(t− tj), where tj denotes the firing time of oscillator j and δ is the Dirac delta
function. A finite network of all-to-all coupled Kuramoto oscillators can also be
written in this form using Aij = 1, Γ(φi, φj) = ǫ sin(φj − φi), and ǫ = k/N .

2.3 Network construction and sampling

In order to explore the effect of correlations between the in- and out-degrees
of random directed networks on synchronization, we perform numerical experi-
ments on strongly-connected networks whose degree sequences—{di}

N
i=1 where

di = (d out
i , d in

i )—are drawn from a Gaussian copula [25], that is, a bivari-
ate probability distribution with specified correlation ρ and discrete uniform
marginals on the interval [1, 40]. Panels (a) and (b) of Fig. 3 show the distribu-
tions used when the node-degree correlation is ρ = 0.7 and −0.7, respectively.

Random networks with specified node-degree correlation were constructed
as follows. First, a random degree sequence is drawn from the appropriate
Gaussian copula. Next, in- and out-degree pairs of this sequence are replaced
at random with new draws from the copula until the sum of the out-degrees
equals the sum of the in-degrees. If the resulting degree sequence does not have
a network realization [14] a new degree sequence is drawn; otherwise, a network
with this degree sequence is constructed using the algorithm of Kleitman and
Wang [20]. Finally, to remove any undesired network structure, we perform a

is a simple functional form that is parameterized solely by the coupling strength ǫ. A linear
PRC can be motivated using the Mirollo-Strogatz formalism with position-phase relation
f(φ) = log

a+1(aφ + 1) and the corresponding PRC given by ∆(φ) = [(a + 1)ǫ̂
− 1](φ + 1

a
),

where ǫ̂ is a small positional displacement [5]. If we choose ǫ̂ = log
a+1(1 + ǫ), then we have

the affine linear PRC ∆(φ) = ǫ(φ+ 1

a
), which is approximated by Eq. 5(a) when a is large. In

addition, PRCs for the leaky integrate-and-fire neuron model are approximately affine linear
when the ratio of the oscillator period and membrane time constant is small [11].
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Figure 3: Example bivariate probability distributions for in- and out-degree
(d in

i and d out
i ) used to generate random networks with specified node-degree

correlation. Black and white denote high and low probability, respectively, for
Gaussian copulas with uniform marginal distributions and correlation ρ = 0.7
(a) and −0.7 (b). Crosses in panel (a) correspond to sampled degree sequence
used in Fig. 4.

Monte Carlo edge-swapping algorithm [9] and check that the resulting network
is connected. This procedure well-approximates an independent random draw
from the set of networks with the randomly chosen degree sequence. Simpler al-
gorithms for constructing random graphs with specified node-degree correlation
[7] would be appropriate for networks larger than those studied here.

3 Results

We will first consider results for the linear PRC in Eq. 5(a) and verify that
similar qualitative results are present over a range of parameter values for the
θ- and λ-family of PRCs in Eqs. 5(b) and (c), respectively. We use the standard
global measure of coherence defined as

r(t) =
1

N

∣

∣

∣

∣

∣

∣

N
∑

j=1

e2πiφj(t)

∣

∣

∣

∣

∣

∣

where r(t) ∈ [0, 1]. The measure of global synchronization is small (r ≈ 0) when
the oscillators’ phases are broadly distributed, but evaluates to unity (r = 1)
when the oscillators are globally synchronized. In all simulations that follow,
the initial oscillator phases are uniformly distributed on the interval [0, 1] and
network sizes are fixed at N = 200 oscillators. Qualitatively similar results are
obtained for larger networks (not shown).

Figure 4 shows an example simulation of the dynamics of synchronization in
a network of N = 200 pulse-coupled oscillators in which the correlation between
in- and out-degree over the population of nodes is ρ = 0.7. The degree sequence
of the network is illustrated by the crosses superimposed upon the Gaussian
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Figure 4: (a) The stroboscopic phase φ of 200 pulse-coupled oscillators organized
in a network with node-degree correlation of ρ = 0.7 (see crosses in Fig. 3(a)).
Global synchronization occurs at t = 335 times the oscillators’ natural period.
(b) The corresponding coherence measure r(t).

copula of Fig. 3(a). Beginning with initial oscillator phases uniformly distributed
on the interval [0, 1] so that r(0) ≈ 0 (see above), a globally synchronous state
is achieved at t = 335 (in units of the oscillators’ natural period). The gradual
agglomeration of clusters of oscillators is revealed by a stroboscopic plot of the
evolving oscillator phases (Fig. 4(a)) as well as the standard coherence measure
(Fig. 4(b)).

3.1 Node-degree correlation and global synchronization

To explore the effect of node-degree correlation on both the size of the basin
of attraction for the globally synchronous state and the time until global syn-
chrony, we repeated simulations similar to Fig. 4 for a large number of random
networks with in- and out-degree correlations of ρ ≈ −1, ρ = 0, and ρ ≈ 1
(constructed as in Sec. 2.3). While all of the networks with positively corre-
lated node degree (ρ ≈ 1) were observed to synchronize, only 56% of networks
with uncorrelated node degree (ρ = 0) and 3% of networks with negatively cor-
related node degree (ρ ≈ −1) synchronized prior to the maximum simulation
time of t = 20,000. Figure 5(a) shows a histogram of synchronization times
for the networks with positively correlated node degree (ρ ≈ 1) that is focused
near the mean value of 460 (filled triangle). Figure 5(b) and (c) show similar
histograms for the networks with uncorrelated (ρ = 0) or negatively correlated
(ρ ≈ −1) node degree. For those networks observed to synchronize prior to
the maximum time of t = 20,000, the mean synchronization time is larger than
that observed for networks with positively correlated node degree (Fig. 5(a)).
While the mode of these distributions does not depend strongly on node-degree
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Figure 5: Histograms of the synchronization time for random networks of pulse
coupled oscillators with specified node-degree correlation (a) ρ ≈ 1, (b) ρ = 0,
and (c) ρ ≈ −1. Filled triangles show mean synchronization time of 1,000
networks that achieved global synchrony prior to t = 20,000. Rightmost bar
indicates percentage of networks that did not achieve global synchrony.

correlation, the heavy tails of the corresponding distributions lead to increased
mean synchronization times and increased variances.
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Figure 6: Mean synchronization time with 95% confidence intervals for ran-
dom networks of pulse-coupled oscillators plotted as a function of node-degree
correlation. Solid and dashed lines show results for initial conditions that syn-
chronized prior to t = 20,000 and 40,000, respectively.
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Figure 6 shows the mean synchronization time with 95% confidence inter-
vals for simulations as in Fig. 5 with node-degree correlations in the range
−1 < ρ < 1. The solid and dashed lines correspond to networks observed
to synchronize prior to maximum simulation times of t = 20,000 and 40,000,
respectively. These calculations demonstrate a general tendency for networks
with positively correlated node degree to synchronize faster than networks with
negatively correlated node degree. For networks with negative node-degree cor-
relation, increasing the maximum simulation time results in larger mean syn-
chronization times for those networks that synchronize.
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Figure 7: Proportion of initial conditions leading to global synchrony prior to
t = 20,000 (solid line and 95% confidence intervals) and 40,000 (dashed line)
as a function of node-degree correlation of random networks of pulse-coupled
oscillators.

Figure 7 shows the proportion of initial conditions that lead to a globally syn-
chronous state as an increasing function of node-degree correlation (−1 < ρ <
1). Furthermore, for any fixed ρ this proportion does not significantly increase
when the maximum simulation time is increased from t = 20,000 (solid line)
to 40,000 (dashed line). Given the heavy-tailed distributions for the synchro-
nization time of networks with negatively correlated node degree (Fig. 5(c)),
it is possible that the proportion of initial conditions that lead to a globally
synchronous state increases sharply for larger values of t that are not shown
here. Nevertheless, the agreement of these two curves suggests that the basin of
attraction for the global synchronous state is significantly smaller for networks
with negatively correlated node degree.

3.2 Node-degree correlation and coherence

Figure 8 shows the synchronization measures r for networks that have not syn-
chronized prior to the maximum simulation time of t = 20,000 versus node-
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Figure 8: Scatter plot of synchronization measure r(20,000) as a function
of node-degree correlation for networks that did not synchronize prior to
t = 20,000. The open circles and squares denote the mean and median, respec-
tively. Inset shows distribution of synchronization measures among networks
with ρ = −0.7.

degree correlation. The mean (open circles) and median (open squares) coher-
ence are shown as a function of ρ. As the node-degree correlation decreases, the
global synchrony measure is more broadly distributed with mean and median
values of r decreasing. The fraction of networks yielding low coherence val-
ues increases dramatically as the node-degree correlation is decreased beyond
ρ ≈ −0.5. A bimodal distribution of coherence values is observed for networks
with node-degree correlation in the range −1 < ρ < −0.5. For networks with
node-degree correlation of ρ = −0.7, for example, the distribution of coherence
values is bimodal, nearly symmetric, and has peaks at r ≈ 0.1 and 0.9 (in-
set). Figure 9 shows trajectories from 3 different networks that contributed to
the inset histogram in Fig. 8. Panels (a) and (b) show trajectories with a low
and high coherence value, respectively, corresponding to the two modes in the
histogram. Panel (c) is included to show that more interesting dynamics may
occur, with the existence of two attracting coherent states (plateaus at r ≈ 0.6
and 0.7) with multiple fast transitions between them.

Figure 10 explores the relationship between coherence and coupling strength
(k in Eq. 6) in networks of pulse-coupled oscillators. Using a representative
network with node-degree correlation of ρ ≈ 1, Fig. 10(a) shows synchronization
measure r (averaged over 100 trials with different initial conditions) as a function
of coupling strength k at t = 10,000 (circles and solid line), 40,000 (squares and
dashed line) and 160,000 (diamonds and dotted line); filled symbols indicate
that all 100 initial conditions achieved global synchrony (i.e., r = 1). In the
network with positively correlated node degree, global synchrony is obtained
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Figure 9: Synchronization measure r(t) for three ρ = −0.7 networks that did
not synchronize prior to t = 20,000 and thus contributed to the histogram in
Fig. 8 (inset).

0  

0.5

1  

0  

0.5

1  

10
−4

10
−3

10
−2

10
−1

10
0

0  

0.5

1  

k

(c)

r

(b)

r

(a)

r

Figure 10: The synchronization measure r, averaged over 100 trials with dif-
ferent initial conditions, as a function of coupling strength k (see Eq. 6) for
representative networks with node-degree correlation of (a) ρ ≈ 1, (b) ρ = 0
and (c) ρ ≈ −1. Snapshots are shown at three times: t = 10,000 (circles and
solid line), 40,000 (squares and dashed line), and 160,000 (diamonds and dotted
line). Filled symbols indicate global synchrony (r = 1) over all initial conditions.

prior to t = 10,000 regardless of initial conditions so long as the coupling is
sufficiently strong (k > 3 × 10−3).

Figure 10(b) and (c) show similar results obtained using representative net-
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works with node-degree correlation ρ = 0 and ρ ≈ −1, respectively. A compar-
ison of solid, dashed and dotted lines shows that when oscillators are weakly
coupled the networks exhibit long transients with low average coherence, fol-
lowed by a transition to larger average coherence, the value of which is insensi-
tive to the coupling strength k. In particular, the plateaus in Fig. 10(c) suggest
the co-existence of high coherence asymptotically stable attracting states and
low coherence states that can trap trajectories for a long period of time before
releasing them. Perhaps most importantly, Fig. 10(c) suggests that coupling
strengths required for global synchronization are relatively large for random
networks with negatively correlated node degree.
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Figure 11: Scatter plots of the synchronization measure r across trials with
different initial conditions for networks with negatively correlated node degree
(ρ ≈ −1) and a range of coupling strengths k. Open squares correspond to
average values shown in Fig. 10(c). The arrows at k = 0.1 correspond to Fig. 12.
Snapshots are shown at three times: t = 10,000 (a), 40,000 (b) and 160,000 (c).

Figure 11 shows scatter plots of the synchronization measure r for networks
with negatively correlated node degree (ρ ≈ −1); the average values (open
squares) in Fig. 11(a), (b) and (c) correspond to the circles, squares and dia-
monds, respectively, in Fig. 10(c). As the coupling strength k is varied, plateaus
in the average synchronization measure often coincide with clusters of points
indicating relatively low variance in the synchronization measure across simu-
lations that are identical save for random initial phases of the oscillators. For
values of the coupling strength in transitional regions between plateaus, the syn-
chronization measures observed are more broadly distributed and, for coupling
strengths in the approximate range 10−2 ≤ k ≤ 10−1, two distinct clusters are
observed. Comparison of Fig. 11(a), (b), and (c) (corresponding to t = 10,000,
40,000 and 160,000, respectively) shows that these clusters are long-lived.

Figure 12 shows an example time course for a network with negative node-
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degree correlation (ρ ≈ −1) and coupling strength of k = 0.1 (corresponding to
arrows in Fig. 11). The synchronization measure r indicates low coherence until
t ≈ 20,000, at which point the coherence abruptly increases. Qualitatively sim-
ilar results were obtained for multiple random initial conditions. Among these
simulations, the time of the abrupt increase in coherence varied widely, while
the time-averaged coherence value during the plateaus was nearly constant.
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Figure 12: Time course of synchronization measure r(t) for a network with
negatively correlated node degree (ρ ≈ −1) and coupling strength k = 0.1 (cf.
arrows in Fig. 11). Insets show distribution of oscillator phases at t = 10,000
and 30,000.

3.3 Physiologically realistic PRCs

We now consider whether node-degree correlation effects the synchronization
properties of pulse-coupled networks with physiologically realistic PRCs, specif-
ically, the θ- and λ-family presented in Fig. 2.

Figure 13 (a) and (b) show the mean synchronization measure r(t = 20,000)
for 100 node-degree correlated networks (ρ ≈ 1) as a function of the the cou-
pling strength k and the PRC shape parameters θ and λ, respectively. Using
the conditions presented in [16], the dashed curves separate regions of stability
and instability of the synchronous state under the assumption of all-to-all con-
nectivity (see legend). For the θ family of PRCs, the high coherence region is
contained within the stable region (π/2 ≤ θ ≤ 3π/2), in spite of the fact that
the networks are not all-to-all coupled. This is not the case for the λ family of
PRCs, for which the stable region is to the right of the dashed curve.

To illustrate the effect of node-degree correlation on synchronization, Fig. 13
(c) and (d) give the absolute difference of the mean synchronization measure
r(t = 20,000) calculated from networks with ρ ≈ 1 and ρ ≈ −1. Consistent
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Figure 13: Top panels show mean synchronization measure r(t = 20,000) for
100 node-degree correlated networks (ρ ≈ 1) as a function of the the coupling
strength k and the PRC shape parameters (a) θ and (b) λ (see Fig. 2). Bottom
panels show the absolute difference of the mean synchronization measure r(t =
20,000) calculated from networks with ρ ≈ 1 and ρ ≈ −1. The dashed curves
identify regions of stability for the synchronous state under the assumptions of
all-to-all connectivity: π/2 ≤ θ ≤ 3π/2 (exact), λ > 5.25 (approximate) [16].

with results presented above using the linear PRC, there are parameter regions
for the θ- and λ-family of PRCs for which the synchronization properties of
networks with anti-correlated node degree are markedly different from networks
with correlated node-degree. The PRCs that maximize this difference when the
coupling strength is k = 0.1 are shown in Fig. 2 (θ ≈ 2π/3, θ ≈ 4π/3, λ = 3.5).

To explore more fully the effect of node-degree correlation on synchroniza-
tion in the context of these physiologically realistic PRCs, Fig. 14 (a) and (b)
show scatter plots of the time to synchronization for networks that synchronized
prior to t = 20,000 (θ ≈ 4π/3 and λ = 3.5, respectively). Mean values are de-
noted by open circles and are omitted for node-degree correlations that did not
result in at least 200 sample points. Consistent with results presented above us-
ing the linear PRC, decreasing node-degree correlation is associated with longer
synchronization times. Numerical evidence suggests the synchronous state is
stable for all simulations using the θ-family PRC with θ ≈ 4π/3. However,
for the λ-family PRC with λ = 3.5 there is an increased proportion of simula-
tions resulting in an unstable synchronous state as the node-degree correlation
decreases (not shown).

For networks that did not synchronize prior to t = 20,000, Fig. 14 (c) and
(d) show that decreasing node-degree correlation is associated with smaller co-
herence for the representative θ- and λ-type PRCs. Bimodal distributions of
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Figure 14: Top panels show scatter plots of the time to synchronization for
networks that synchronized prior to t = 20,000 using (a) θ ≈ 4π/3 and (b)
λ = 3.5 (see Fig. 2). Open circles denote mean values and are omitted for node-
degree correlations that did not result in at least 200 sample points. Bottom
panels show scatter plots of r(t = 20,000) for those networks that did not
synchronize prior to t = 20,000. The coupling strength k = 0.1.

the coherence measure were observed for the λ-type PRC with node-degree cor-
relation in the range −0.4 ≤ ρ ≤ −0.2 (not shown), similar to the linear PRC
(see inset of Fig. 8). While the coherence is a gradually increasing function of
node-degree correlation for the λ-type PRC (similar to the linear PRC), r is not
a strong function of ρ for the θ-type PRC. It is unclear what aspect of these
representative PRCs is responsible for this difference.

Figure 15 shows two representative time courses of the synchronization mea-
sure r(t) for networks with negatively correlated node-degree (ρ ≈ −1) and
physiologically realistic PRCs. Fig. 15 (a) shows a long-lived low coherent state
followed by an abrupt transition to global synchrony at t ≈ 11,000 (θ = 4π/3,
k = 0.275). Figure 15 (b) shows low- and high-coherence attracting states with
many abrupt transitions between them (λ = 3.5, k = 0.275). In both cases
qualitatively similar results were obtained using the linear PRC (cf. Fig. 9(c)
and 12).

4 Discussion

We investigated the dynamics of synchronization in random networks of pulse-
coupled oscillators with specified node-degree correlation (−1 < ρ < 1). We
found that networks with negatively correlated node degree are less likely to
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Figure 15: Representative time courses of the synchronization measure r(t) for
networks with negatively correlated node-degree correlation (ρ ≈ −1), coupling
strength k = 0.275, and (a) θ = 4π/3 and (b) λ = 3.5 (see Fig. 2).

achieve global synchrony (Figs. 5 and 14) and synchronize more slowly (Fig. 6
and 14) than networks with positively correlated node degree. In networks with
negatively correlated node degree, the proportion of initial conditions leading to
global synchrony is reduced (Fig. 7 and 14) and the variability of the coherent
state is increased (Fig. 8 and 14) in comparison to networks with uncorrelated
or positively correlated node degree. Networks with negatively correlated node
degree often exhibited interesting dynamics, such as long-lived transients and
fast transitions between multiple attracting states, phenomena that were not
observed in networks with positively correlated node degree (Figs. 9(c), 11, 12,
and 15).

As mentioned in Sec. 2.1, the node-degree correlation of a directed network is
not to be confused with assortativity or edge-degree correlation, concepts most
often applied in the context of undirected graphs. While measures of assortativ-
ity can be defined for directed networks, the random networks studied here are
not significantly edge-degree correlated. While edge-degree correlation of non-
linear oscillators has been studied in the context of Laplacian dynamics [10], to
our knowledge this is the first study of the effect of node-degree correlation in
random networks of pulse-coupled oscillators.

4.1 Initial oscillator phase distribution and synchroniza-

tion time

In all simulations presented above, the initial oscillator phases were uniformly
distributed on the interval [0, 1] leading to small initial coherence (r(0) ≈ 0).
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When networks with negatively correlated node degree are initialized in this
fashion, global synchrony is unlikely and synchronization, when it does occur,
is slow (Figs. 7 and 14). Nevertheless, it is possible to choose initial conditions
with small initial coherence (r(0) ≈ 0) that lead to rapid synchronization. For
example, if the ordering of initial oscillator phases (φn(0) ≥ φn+1(0)) coincides
with the lexicographical ordering of the node degrees (d out

n ≥ d out
n+1 and d out

n =
d out

n+1 ⇒ d in
n ≥ d in

n+1), the time to synchronization of networks with ρ ≈ −1 is
shorter than that observed for networks with ρ ≈ 1 when using the linear and
θ-family PRCs (θ ≈ 4π/3, not shown). We found no such effect for the λ-family
of PRCs when λ = 3.5, presumably because the globally synchronous state is
unstable (Fig. 13).

4.2 Node-degree correlation and global network topology

The Laplacian of an undirected network with adjacency matrix A is defined as
L = DA − A, where DA is the diagonal matrix of row sums of A. The eigen-
values of L give information about the network topology, such as the number of
connected components, the community structure, and the rate of mixing of ran-
dom walkers [8]. In the case of Kuramoto oscillators coupled via an undirected
network, the Laplacian provides information about the time to synchronization
[19, 2]. Although such a link has yet to be shown for directed networks of
pulse-coupled oscillators, both the undirected and directed Laplacian (defined
below) provide information about network topology that may be relevant to
synchronization of pulse-coupled systems.

The Laplacian of a strongly-connected directed network can be defined as
[6, 36]

L′ = Dφ −
DφP + PT Dφ

2
(8)

where P = D−1
A A, A is the adjacency matrix for the network, DA is the diagonal

matrix of row sums of A, Dφ is a diagonal matrix, and φ solves φP = φ subject
to ||φ||1 = 1. Since L′ is symmetric and has zero row sum, the eigenvalues of L′

are real, nonnegative, and can be ordered as 0 = λ1 < λ2 ≤ . . . ≤ λN .
The spectral gap of the Laplacian of a directed network (λ2) has proper-

ties similar to the spectral gap of the Laplacian of an undirected network [36].
The spectral gap is known to have an effect on the rate of convergence to the
globally synchronous state when identical oscillators are coupled as in the Ku-
ramoto model or via an undirected Laplacian (dφi/dt = ω−σ

∑

j Lijφj) [19, 2].
Similarly, the eigenvalue ratio λN/λ2 is related to the propensity of identical os-
cillators coupled via an undirected Laplacian to have a stable synchronous state
[3]. While it is not known if the directed Laplacian (Eq. 8) has these properties
in the case of pulse-coupled oscillators, it is of interest to explore the effect of
node-degree correlation on both λ2 and the ratio λN/λ2.

Figure 16 shows the mean Laplacian eigenvalue λ2 (panel a, bottom line)
and the ratio λN/λ2 (panel b) are monotone increasing and decreasing functions
of node-degree correlation, respectively (average over 1,000 random networks
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for each ρ). Recall that for pulse-coupled networks with negatively correlated
node degree (corresponding to small λ2 and large λN/λ2 in Fig. 16) we ob-
serve slow synchronization (Fig. 6) and reduced percentage of initial conditions
that reached global synchronization (Fig. 7). This relationship between Lapla-
cian eigenvalues and synchronization is consistent with prior work focusing on
oscillators coupled as in the Kuramoto model or via an undirected Laplacian
[19, 2, 3]. Note this correspondence is less clear in the case of the λ-family PRCs
where the synchronous state may be unstable (Fig. 14(b) and (d)).
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Figure 16: Laplacian eigenvalues λN (top line) and λ2 (bottom line) in (a) and
ratio λN/λ2 in (b) as a function of node-degree correlation (ρ). Each point
shows mean ± standard deviation for 1,000 random networks.
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Figure 17: Three measures of network topology as a function of node-degree
correlation: (a) average shortest path length (left axis, decreasing function)
and average clustering coefficient (right axis, increasing function); and (b) av-
erage communicability. Each point shows mean ± standard deviation for 1,000
random networks.

Figure 17 shows the effect of node-degree correlation on three additional
measures of network topology: average shortest path length, clustering coeffi-
cient, and communicability [12]. Figure 17(a) shows that the average shortest
path length and clustering coefficient are decreasing and increasing functions of
node-degree correlation, respectively, consistent with the known relationship be-
tween these measures and synchronization of Kuramoto oscillators on undirected
scale-free networks [17]. Figure 18 sheds light on the observed relationship be-
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tween node-degree correlation and these measures by comparing the adjacency
matrices for networks of 200 lexicographically ordered oscillators (Sec. 4.1) with
ρ ≈ 1 and ρ ≈ −1. In particular, the asymmetry present in networks with
negatively correlated node degree gives a directional bias to network connectiv-
ity that leads to an increased average distance between oscillators and reduced
clustering.

ρ ≈ 1 ρ ≈ −1

(a) (b)

Figure 18: Adjacency matrices for networks with node-degree correlations (a)
ρ ≈ 1 and (b) ρ ≈ −1 with lexicographically ordered oscillators (see Sec. 4.1).

4.3 Local network topology and the dynamics of synchro-

nization

To obtain more insight into the dynamics of synchronization in positively and
negatively correlated networks, we considered local network properties. For ex-
ample, Fig. 19 shows how the node-degree correlation of a network influences
local clustering of subnetworks composed of nodes with similar in-degree. Local
clustering of a subnetwork is defined as the number of arcs divided by the to-
tal possible number of arcs. For both positive and zero correlated node-degree
networks, we find the local clustering increases with in-degree. However, for neg-
atively correlated networks, local clustering is a biphasic function of in-degree
with maximum at d in ≈ 20. This topological difference between positively and
negatively correlated node-degree networks influences the dynamics of synchro-
nization (see below).

Figure 20(a) shows the coherence measure as a function of time calculated
on the subnetworks defined above. In this positively correlated network (ρ ≈ 1)
that achieves synchrony, the larger in-degree nodes synchronize first, consistent
with these subnetworks having larger in-degree and larger clustering as in Fig. 19
(solid line). Using the negatively correlated network (ρ ≈ −1) that led to the
jump seen in Fig. 12, Fig. 20(b) shows higher coherence occuring instead in
the subnetworks with d in ≈ 20, as well as slightly higher coherence occuring in
the subnetworks with higher in-degree (cf. Fig 19). Note that in both cases,
the subnetworks with relatively large clustering and large in-degree have higher
coherence.
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Figure 20: Synchronization measure r(t) calculated on subnetworks from Fig. 19
illustrating (a) synchronization on a positively correlated network (ρ ≈ 1) and
(b) the dynamics occuring during the jump illustrated in Fig. 12.

4.4 Connections with previous work

The long-lived transient states observed in networks with negatively correlated
node degree (e.g., the t = 10,000 inset of Fig. 12) were insensitive to random
perturbations of oscillator phases, that is, random perturbations did not imme-
diately lead to a transition from the low-coherence to the high-coherence state,
although it does of course change the time at which the jump ultimately oc-
curs (not shown). In prior work that did not consider node-degree correlation,
long-lived transient states were observed in networks of identical pulse-coupled
oscillators with and without time delay [35, 40, 39].

Similar to the results reported here, node-degree correlation has been shown
to influence the synchronization of Kuramoto oscillators whose governing equa-
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tion is given by Eq. 7 with Γ(φi, φj) = ǫ sin(φj − φi) and ǫ = k/N [28, 27, 29].
In particular, the onset of synchronization is shifted to smaller values of the
coupling strength in directed networks of Kuramoto oscillators with positively
correlated node degree [30, 31]. Restrepo and coworkers have shown that node-
degree correlation is proportional to the largest eigenvalue of the network ad-
jacency matrix (so long as the largest degree is not too large) and, in the case
of Kuramoto oscillators, the critical coupling strength is inversely proportional
to the largest eigenvalue. Our observations of the effect of coupling strength
and node-degree correlation on synchronization of pulse-coupled oscillators sim-
ilarly suggest a tendency of the positively correlated networks to synchronize
more easily than negatively correlated networks (Fig. 10).

Low-coherence states tend to be associated with heterogeneity in networks
of coupled oscillators. For example, synchronization is accelerated in all-to-all
coupled networks of Kuramoto oscillators when variability of intrinsic frequency
is reduced. Similarly, in random networks of pulse-coupled oscillators, synchro-
nization is promoted by scaling the efficacy of connections so that each oscillator
receives the same input when its incoming neighbors fire [35, 40]. As expected,
when this scaling was applied to our networks of pulse-coupled oscillators, mean
synchronization time and percent synchronization are no longer strong functions
of node-degree correlation. Nevertheless, our observations of a strong effect of
node-degree correlation on the dynamics of synchronization (Figs. 6–8, 14) is
not an obvious consequence of heterogeneous network structure, because in our
simulations networks with positively and negatively correlated node degree are
equally heterogeneous, e.g., the marginal distribution of in- and out-degree is
identical in all simulations performed.
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