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1. Introduction

Networks appear throughout the sciences, forming a common thread linking research ac-
tivities in many fields, such as sociology, biology, chemistry, engineering, marketing, and
mathematics. For example, they are used in ecology to represent food webs and in engineer-
ing and computer science to design high quality internet router connections. Depending on
the application, one network structural property may be more important than another. The
structural properties of networks (e.g. degree distribution, clustering coefficient, assorta-
tivity) are usually characterized in terms of invariants [8], which are functions on networks
that do not depend on the labeling of the nodes. In this chapter we focus on network
invariants that are quantitative, that is, they can be characterized as network measures.
An increasingly important application area is how network invariants affect the dynamics
of a process on the network (e.g. respiration, current, traffic) [36]. In order to study the
potential effect of incremental changes in network invariants on network dynamics, one or
more network invariants are held constant, thereby creating a family of networks. In this
chapter the degree distribution of a network is held constant whilst other network invari-
ants are examined. In particular, we examine the effects of assortativity, the Randić index
and eigenvalues of the Laplacian on network dynamics.

2. Notations and Definitions

We use the terms network and graph interchangeably. We assume the reader to have a
knowledge of graph theory (see, e.g., [54]). Let a graph G = (V,E) be given where V is
the set of nodes and E the set of edges. For a directed graph, we use the similar notation
G = (V,A), where A is the set of arcs. We specify, when necessary, whether G is directed
or not. For undirected graphs, we use the notation di to denote the degree of the node i,
i.e., the number of edges incident to i. For directed graphs, we use the notation d−i and

d+i to denote the in- and out-degree of the node i, i.e., the number of edges with i as their
head and tail, respectively. We use subscripts when there may be confusion on the graph
in question, e.g., d−i (G) or d+i (G). When we discuss subsets of graphs, we use calligraphic
font, e.g., G. For undirected and directed graphs, we define A(G) to be the node-node
adjacency matrix and D(G) to be the diagonal matrix with the degree sequence d (or d+

in the directed case) along the main diagonal. We omit reference to G when the graph is
clear from context.
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For what follows, we assume that any set of graphs we use has a fixed number of nodes
n = |V | for all graphs in the set. We also assume that any set of graphs consists of either
all directed graphs or all undirected graphs. We denote the set of undirected graphs by U
and the set of directed graphs by W.

For an undirected graph G, we define the Laplacian of G as the n×n matrix L(G) = D(G)−
A(G). The spectrum of L(G) is well-studied. We simply note that L(G) is symmetric and
therefore has all real eigenvalues. As before, we omit reference to G when the graph meant
is clear. There are multiple definitions for the Laplacian of a directed graph. The Laplacian
of a strongly-connected directed graph G is defined as

(1) L′(G) = Dφ −
DφP + P TDφ

2

where P = D(G)−1A(G) and Dφ is a diagonal matrix, with φ solving φP = φ subject to
||φ||1 = 1 [10, 56]. Since L′ is symmetric and has zero row sum, the eigenvalues of L′ are
real and nonnegative.

For an undirected graph G, the degree sequence of G is the non-increasing sequence of
degrees of nodes of G, such as

d1 ≥ d2 ≥ . . . ≥ dn,
where di = deg(i) with i ∈ V . For example, the degree sequence for the undirected graph
in Figure 1 is

{5, 3, 3, 2, 1, 1, 1, 1, 1}.

We denote the eigenvalues of a graph G by λi(G) where

0 = λ1(G) ≤ λ2(G) ≤ λ3(G) ≤ . . . ≤ λn(G)

are the n eigenvalues of L or L′. We define the algebraic connectivity [16] of G as λ2. Our
choice of L′ above is motivated by the fact that λ2 for L′ has similar properties to λ2 for
L in the undirected case [56].

For an undirected graph G, we define the generalized Randić index [46, 34] s(G) by

(2) s(G) =
∑

(i,j)∈E

didj .

Section 4.3 discusses the extension of s(G) to directed graphs. Its relation to assortativity
[43, 57] is discussed below.

Other common network invariants include assortativity, clustering coefficient, and average
shortest path distance. Network assortativity is typically scaled between [−1, 1] with values
less than zero indicating that high degree nodes are more likely to be adjacent to low degree
nodes (disassortativity). Assortativity, r(G), can be shown to be equivalent to s(G) using
the equation
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Figure 1. Undirected graph G(V,E) with |V | = 9 and |E| = 9.

(3) r(G) =
[
∑

(i,j)∈E didj ]− [
∑

(i)∈V
1
2d

2
i ]
2/|E|

[
∑

(i)∈V
1
2d
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i ]− [

∑
(i)∈V

1
2d

2
i ]
2/|E|

where |E| denotes the number of edges in the graph [32]. As you can see, r(G) is linearly
related to s(G) since s(G) is in the numerator and only the links and degrees scale it.

The clustering coefficient of a network computes the frequency of complete subgraphs on
3 nodes, a triangle (in social networks a triangle denotes that a friend of your friend is my
friend). For each node i in the network compute

Ci =
[number of triangles in which node i is incident]

[number of three tuples of connected nodes centered on node i ]
.

Then, the clustering coefficient C = 1/n ·ΣiCi. For the graph in Figure 1, C = 1/9 · (1/3 +
1/3 + 1/6) ≈ 0.09.

Given the shortest path distance matrix D of a graph, the average shortest path distance
can be calculated by averaging the non-zero entries in D. The longest shortest path for
each node i is called the eccentricity of i. In Figure 1, the eccentricity of node 1 is 2, of
node 2 is 3, and of node 7 is 4. The diameter of a network is the length of the longest
shortest path (the maximum node eccentricity).

We make use of three types of undirected graphs, Erdős-Rényi, geometric and scale-free,
whose structure depends on the parameters chosen.
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Erdős-Rényi G(n,p) Graphs. [20, 14] A number of nodes n and a probability of con-
nection p are chosen. A random probability is generated for each possible edge. If the
probability generated is less than p then an edge is added.

Geometric Graphs. A number of nodes n is chosen and placed on a unit square (or unit
circle) at random. This gives each node i coordinates x, y. A radius r is chosen. An edge
is placed betweeen nodes i and j if (xi − xj)2 + (yi − yj)2 ≤ r2 [52].

Power Law Graphs. A preferential attachment algorithm is used to create graphs whose
degree sequences follow a power-law distribution. Following the convention in the litera-
ture we will refer to these graphs as “scale-free”. A number of nodes n is chosen. New
nodes are added and connected to existing nodes, based on a probability proportional to
the current degree of the nodes, until n nodes are generated, making it more likely that a
new node will be connected to a higher degree node [52]. The algorithm allows a minimum
node degree to be specified.

3. Spectral properties and network dynamics

There are a number of well studied network invariants associated with the spectrum of a
graph [8]. In particular, λ2, λn, and λn

λ2
have been shown to have a direct impact on a

network’s ability to synchronize flow activities at the nodes. In this section we investigate
how the node (e.g., airport, neuron, oscillator) connectivity influences the flow (e.g. traffic,
information, current) on a network. Of importance here is the tunability of a given network
invariant. We realize tunability via optimization. Atay et al. [3, 2] provide definitions of
node synchrony for networks. Instead of making direct use of these definitions we focus
on algebraic connectivity, λ2, a graph invariant that has been shown to correlate well (see
[3, 4, 55]) with a network’s capacity to synchronize. Intuitively, networks with small λ2
are easier to pull apart. In particular, if λ2 = 0, then the network is disconnected [16] and
synchronization is impossible. Without more details regarding the flow on a network it is
difficult to make definitive statements regarding synchronization. However, in general, the
flow on a network is less likely to synchronize if λ2 is small. The two leftmost networks
in Figure 2 have identical degree distributions, but the network on the left is more weakly
connected (e.g., the removal of a single edge can disconnect the network). Note that the
two rightmost networks are identical to the two leftmost networks except for the addition
of a leaf. Although both networks now have an edge connectivity of one (cutting one edge
breaks the graph apart), λ2 still reflects the higher global connectivity of the graphs.

For certain processes on networks (often described as a complex system) synchronization
is an essential feature. For example, in mammals a small group of neurons (roughly 200) is
responsible for generating a regular rhythmic output to motor cells that initiate a breath
(see Section 5.1.1). Without synchronization of the neuronal output, breathing would be
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Figure 2. Left-to-right, λ2 = 0.44, λ2 = 1.00, λ2 = 0.34, λ2 = 0.60

ragged or not occur at all. Synchronization, as described here, leads to nodes (neurons)
behaving in concert. In an air transportation setting such synchronization would be un-
desirable. Think of the airports as the neurons in our mammalian respiratory example.
Inhaling means all planes land at all airports simultaneously. Exhaling means they depart
together. The result is severe congestion. Thus, for this definition of synchronization, one
would like an air transport network design to minimize synchronization.

Figure 3 displays the result of optimizing λ2 while holding the degree distribution fixed and
s(G) fixed. The graphs are generated by socnetv1 and optimized with tabu search [27]. The
position of each node in the plots is given with respect to the reciprocal of the eccentricity
of each node i. The goal of the plots is to uncover qualitative differences between the
graphs with small and large values of the second eigenvalue of the Laplacian.2 Nodes
with equal eccentricity values are plotted on the same (dashed line) circles. The circles
with larger radii have larger eccentricity. Consequently, nodes near the center have shorter
longest paths. The paired plots exhibit large qualitative differences in the eccentricity
pattern.

Qualitatively, when λ2 is small, the patterns are less organized, the eccentricity plot on the
left in Figure 3 is more dispersed and consists of many rings of constant eccentricity. The
eccentricity plot for the larger λ2 (right half of Figure 3) is more organized, with fewer rings
of constant eccentricity. Specifically, Figure 3(a) has 11 rings and Figure 3(b) has only 5
rings. The range of eccentricity values for the large λ2 geometric graph, [4, 8], dominates
the range for the large λ2 plot, [26, 42]. That is, the eccentricity pattern in Figure 3(b) is
non-overlapping and interior to the one for Figure 3(a).

The diameter of the graph in Figure 3(a) is 42 while the graph diameter in Figure 3(b) is
8. For graphs with a fixed degree distribution and a fixed value of s(G), this result – that
λ2 is inversely proportional to the eccentricity – appears to hold in general. We know of
no theorem that proves this result but numerous computational tests support this claim.
Moreover, the inverse relationship between λ2 and the eccentricity does not hold if s(G) is
allowed to vary. (The interested reader is referred to [27] for further examples.)

1The source code and documentation can be found at http://socnetv.sourceforge .net/.
2We leave it to the reader to become acquainted the variety of measures and display features in socnetv.

For the purposes of this exposition, we are interested only in the qualitative differences between the plots.



6 M. D. LAMAR AND R. K. KINCAID

(a) λ2 = 0.009, e(V ) = (26, 42), c(G) = 0.426 (b) λ2 = 0.314, e(V ) = (4, 8), c(G) = 0.297

Figure 3. Geometric graphs: 100 nodes, s(G) = 0.971, fixed degree distribution

Several authors [3, 2, 13, 39, 44] have examined network dynamics as a function of network
topology and have shown that different constrained topology optimization problems, such
as maximizing synchronization or node proximity, lead to optimal topologies that, although
not identical, share common features. Donetti et al. [13] call these optimal networks
entangled. The result appears relevant to optimization of transport networks. Donetti et
al. provide an illustrative example foreshadowing the topological significance of the spectral
gap for networks dynamics. If a network consists of a number of disconnected subgraphs,
its Laplacian is block-diagonal and the multiplicity of the trivial zero eigenvalue equals
the number of disconnected subgraphs. Connecting the subgraphs weakly introduces small
eigenvalues with nearly constant corresponding eigenvectors. This feature (small spectral
gaps) provides a criterion for graph partitioning in well-known algorithms [42]. Intuitively,
small λ2 values imply the existence of well-defined modules that can be disconnected by
cutting a small number of links, while large λ2 values point to unstructured (entangled)
graphs. Several authors, [13, 39, 4, 44], study synchronizability of diffusive processes on
networks with identical nodes, considering a general dynamical process

(4) ẋi = F (xi) + σ

N∑
i=1

LijH(xj), i = 1, . . . , N,

where xi are dynamical variables, F is an evolution function, H is a coupling function,
and σ is a coupling constant. Although diffusive processes are known to have synchronous
states, the question is, under what conditions these states are stable. A linear stability
analysis, [4], reveals that synchronized states are more stable for smaller λN/λ2. Since the
variability of the maximum eigenvalue is bounded [38], increasing stability of synchronized
states amounts to maximizing the spectral gap λ2. Other authors [3, 55] have used the
spectral gap as an indicator of synchronization for discrete systems.

The normalized Laplacian,  L′ = D1/2LD−1/2, and its eigenvalues {λi} also play an im-
portant role, especially in the study of random walks, a subject relevant to propagation
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Figure 4. A Ramanujan or expander graph.

of traffic through networks. Large spectral gaps increase the rate at which random walks
move and disseminate. A class of graphs with large spectral gaps, known as Ramanujan
graphs (see Figure 4), is described by Donetti et al. [13]. These graphs are regular, have
a vanishing clustering coefficient, a small average shortest path distance and a large girth
(number of edges in the smallest cycle denotes the girth). Engineered systems do not typi-
cally fall into the class of Ramanujan graphs. For example, the nodes and node degree are
clearly not identical for internet router networks or air transportation networks. However,
changing the coupling constant in Equation (4) to σ/di, and thus normalizing the effect
of the neighboring nodes (in turn, increasing the relevance to traffic networks), results in
an optimal topology when the normalized spectral gap is maximized. These graphs are
not characterized as nicely as the Ramanujan graphs. In particular, the networks are no
longer regular and the degree distribution is not Possion. In [13] a plot of one instance
of a graph with this degree distribution can be found. The plot is strikingly similar to
one in [12] in which an optimization model was employed to construct the network. The
optimization model employed in [12] minimizes a weighted graph distance that attempts
to capture two conflicting objectives: avoidance of long paths (minimize diameter) and
avoidance of heavy traffic (minimize node degree). Both [13] and [12] note that the degree
distribution for the network apppears to decay faster than an exponential distribution and
that the graph avoids construction of long paths. However, neither reference verifies the
decay rate of the degree distribution.

4. Network sampling

Many applications require the ability to uniformly sample networks with constrained graph
invariants [11, 35]. One of the most well-studied examples is the uniform sampling of net-
works with a fixed degree sequence. Other constraints can be added to this, including fixed
assortativity or edge-degree correlation [27]. The well-known algorithm of Havel-Hakimi
[22, 21] constructs networks from a degree sequence, albeit in a non-uniform manner. For
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Figure 5. Example flow network used in the Ford-Fulkerson maximal flow
algorithm to construct a network with degree sequence
{(d+1 , d

−
1 ), (d+2 , d

−
2 ), (d+3 , d

−
3 )}.

the directed case, an analogous algorithm to Havel-Hakimi was developed by Kleitman and
Wang [29].

Another algorithm to construct directed networks from fixed degree sequences uses the
Ford-Fulkerson maximum flow algorithm [17]. To see this, suppose we have a directed
degree sequence {(d+1 , d

−
1 ), . . . , (d+n , d

−
n )}. Create a directed flow network F with 2n + 2

nodes V = {v1, . . . , v2n, s, t}, where s is the source node and t is the target node. The arc
set is given by

A = {(s, vi), (vn+i, t)}ni=1 ∪ {(vi, vn+j) | i 6= j}ni,j=1

with capacities

c(s, vi) = d+i , i = 1, . . . , n,

c(vi, vn+j) = 1, i, j = 1, . . . , n with i 6= j,

c(vn+i, t) = d−i , i = 1, . . . , n.

Solving for a maximal flow using the Ford-Fulkerson algorithm will give a network realiza-
tion of the degree sequence. An example flow network F for a degree sequence with three
nodes is given in Figure 5.

The algorithms of Havel-Hakimi and Kleitman-Wang unfortunately do not construct net-
works from the set of all realizations with equal probability. In order to achieve a uniform
sample from the space of realizations, more sophisticated algorithms must be used. There
are two main classes of algorithms that are used in these circumstances. The first consists
of importance sampling algorithms, where each network G in the sample space G or re-
alizations has a positive probability pG > 0 of being sampled, with the exact probability



NETWORK SAMPLING ALGORITHMS AND APPLICATIONS 9

pG known. One can then get an unbiased estimator to a population measure f(G) by per-
forming a weighted sum over a set of samples, with each sample weight wG = 1/pG. There
are modifications of the Havel-Hakimi and Kleitman-Wang algorithms that have been used
with importance sampling [7, 19, 26].

The second method to achieve a uniform sample consists of using a simple algorithm like
Havel-Hakimi or Kleitman-Wang to first construct a network realization, and then use edge
or arc-switching techniques [11, 50]. For the directed case, an example of an arc-switch is
shown here, where we move from two arcs {(i, j), (m,n)} ⊂ A to {(i, n), (m, j)} ⊂ A.

i i

j

m

n j

m

n

Note that arc switches preserve the degree sequence. In these algorithms, since any two
sample networks G1, G2 ∈ G are connected by a series of edge or arc-switches [50], we can
then perform a Monte Carlo random walk on G. Using different algorithmic modifications,
such as Metropolis-Hastings, we can make the random walk’s stationary distribution uni-
form [11]. The main drawback of these techniques is the lack of analytical measures of the
mixing time, although some have been shown in certain cases [6].

4.1. Degree distributions. The most studied graph invariant is the degree distribution.
Some of the most important types include binomial (Erdős-Rényi networks), power-law
(scale-free networks), and poisson (geometric random networks).

There are many techniques to construct random networks with a prescribed degree distri-
bution [20, 14, 45]. The technique we discuss in this chapter is the use of inversion methods
to randomly sample a degree sequence from a specified distribution and then sample a net-
work uniformly from this degree sequence. To randomly sample a degree sequence, we use
the probability integral transform which states that if X is a continuous random variable
with cumulative distribution given by F , then U = F (X) is a random variable on [0, 1] with
a uniform distribution. In theory, to generate a random number X from the distribution F
one only needs to generate a uniform random variable U and then compute X = F−1(U).
This is of limited use in general as it is computationally intractable to compute the inverse
cumulative distribution (also known as the quantile function), except, for example, in the
case of discrete distributions. As degree distributions are discrete, the inversion method
can be translated into an algorithm as follows. Given a discrete random variable k denoting
node-degree with the degree distribution pi ≡ P (k = i), we can compute the cumulative

distribution Fk =
∑k

i=1 pi. Now draw a uniform random variable U on the interval [0, 1]
and choose k such that Fk−1 < U < Fk.
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One way to generalize the inversion method to directed networks is via the use of copulas
[40], that is, a bivariate probability distribution with uniform marginals and specified cor-
relation ρ between the random variables. If we denote the cumulative distribution function
of the copula by C(U1, U2) and the desired marginals’ CDFs by F1(X1) ≡ Prob[X ≤ X1]
and F2(X2) ≡ Prob[X ≤ X2], then we can generate a pseudo-random pair (X1, X2) from
our desired bivariate probability distribution with marginals F1 and F2 by first drawing a
random sample (U1, U2) from C and then constructing

(
X1 = F−11 (U1), X2 = F−12 (U2)

)
. In

this way, X1 and X2 will have the approximate correlation between U1 and U2 as specified
in the construction of C, as well as be representative samples from marginal distributions
F1 and F2, respectively.

The next two sub-sections describe work in sampling networks with a fixed degree sequence
and specified node-degree and/or edge-degree correlation.

4.2. Node-degree correlation. The node-degree correlation [47] of a finite network can
be quantified in several ways, perhaps most intuitively using the Pearson correlation coef-
ficient

ρ =
1

N

N∑
i=1

(
d+i − µ+

σ+

)(
d−i − µ−

σ−

)
≡ cov(d+, d−)

σ−σ+
,

where µ+ and σ+ are the mean and standard deviation of the out-degrees of the nodes (sim-
ilarly for µ− and σ−) and cov(d+, d−) represents the covariance between d+ and d−. As de-
scribed in the previous section, sampling networks from degree sequences with a prescribed
node-degree correlation only require specification of the correlation coefficient between the
in and out-degrees, as well as the marginal in and out-degree distributions.

In [31], the relationship between node-degree correlation and synchronization of pulse-
coupled oscillators was explored. Examples in nature of pulse-coupled oscillators include
fireflies in southeast Asia, as well as tonically firing neurons. Of particular interest in these
situations is synchronization of the phases of each oscillator (see Section 5.1.2).

4.3. Edge-degree correlation. A natural next step is to sample networks with a fixed
degree sequence and desired assortativity (3), or edge-degree correlation [27, 41]. To define
edge-degree correlation, it is easiest to start with the directed case. Thus, for a directed
graph, we define the edge-degree correlation as the Pearson correlation coefficient between
the in-degrees (out-degrees) at the tail and in-degrees (out-degrees) at the head of every
arc. This is given by

(5) ρe(G) =
1

M

∑
(i,j)∈A

(
dpi − µ

p
1

σp1

)(
dqj − µ

q
2

σq2

)
=

1
M

∑
(i,j)∈A d

p
i d
q
j − µ

p
1µ

q
2

σp1σ
q
2

,

where M is the number of arcs, p, q ∈ {−,+} and µpk, σ
q
k are the mean and standard

deviation of dp or dq for vertices at the tail (k = 1) or head (k = 2) of all arcs. In the
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undirected case, by transforming every edge into a bidirectional arc, it can be shown that
the edge-degree correlation in (5) is equivalent to (3), in other words, ρe(G) = r(G).

Due to the relationship mentioned in Section 2 between s(G) and ρe(G), many people
choose to use the metric s(G) when working with edge-degree correlations, which we do
as well. One of the techniques [43, 47] to increase or decrease the edge-degree correlation
is to do 2-swaps between two edges (i, j) and (m,n) ∈ E when the edge-degree increment
∆
(
(i, j), (m,n)

)
= didj + dmdn − didn − dmdj = (di − dm)(dj − dn) is positive (decrease

edge-degree correlation) or negative (increase edge-degree correlation).

In the directed case, we have four different measures of edge-degree correlation [57] given
by

spq(G) =
∑

(i,j)∈A

dpi d
q
j ,

where p, q ∈ {−,+} (see (2)). This can be seen as a natural extension of s(G) to the directed
case, and has a similar relationship to (5) as edge-degree correlation and assortativity have
in the undirected case. Now we have four edge-degree increments given by

(6) ∆pq
(
(i, j), (m,n)

)
= (dpi − d

p
m)(dqj − d

q
n),

where p, q ∈ {−,+}.

We will now illustrate an algorithm on directed graphs, similar to the undirected version
[43, 47], which attempts to sample networks with a fixed degree sequence and desired edge-
degree correlations {s−−, s−+, s+−, s++}. The key observation is that certain arc-swaps
modify only one of the four edge-degree correlations at a time. To see this, considering (6),
if you want to vary correlation s−+ and leave the others fixed, for example, then you only
consider swaps between an arc (i, j) ∈ A with arcs in the set A−+ij ≡ {(m,n) ∈ A | d+m =

d+i and d−n = d−j }. Thus, for p = + or q = −, we have ∆pq((i, j), A−+ij ) = 0, and thus any

two-swap between (i, j) and an arc in A−+ij leaves s+−, s++ and s−− fixed. For general

spq, we construct the set Apqij as Apqij ≡ {(m,n) ∈ A | dqm = dqi and dpn = dpj}. The general
algorithm then cycles through the four edge-degree correlations and performs an arc-swap
between a random arc (i, j) and an arc in Apqij if the supposed swap moves the edge-degree

correlation spq towards the desired value. Similar algorithms exist (see [57], for example)
to sample networks with desired edge-degree correlations. Note that there is a dependency
between the node-degree and edge-degree correlations [47], so that we may or may not be
able to achieve a network with our desired correlation structure.

5. Applications

5.1. Synchronization on networks. Synchronization of processes is ubiquitous in the
biological sciences, for example the synchronization of neurons in the preBötzinger complex
which drives the breathing rhythm [15], the synchronization of repressilator networks in
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gene transcription [18], and the synchronous release of oxytocin from magnocellular hy-
pothalamic neurons in neuroendocrinology [48]. Network structure and oscillator dynamics
play fundamental roles in the dynamics of the system. There are many models for the os-
cillator dynamics that are considered, ranging from the complexity of Hodgkin-Huxley
neuron models to phase models where we track only the phase of the oscillators and ignore
their positions. The three phase models that have received the most attention are the Ku-
ramoto oscillator, the Laplacian oscillator (4), and pulse-coupled oscillators. In the next
two subsections, we discuss the effect of network structure on the synchronous bursting
of neurons in the preBötzinger complex and the phase synchronization of pulse-coupled
oscillators.

5.1.1. Neuronal networks. In mammals, a small group of neurons in the brain stem, the
pre-Bötzinger complex [15], is responsible for generating a regular rhythmic output to motor
cells that initiate a breath. Disconnected, these neurons are unable to provide sufficient
output to activate the motor neurons, but their interconnected network structure allows
them to synchronize without any external influence and produce regular bursts. This is
a clear example of an important neuronal network where robustness (and synchronization
[27]) is essential.

In [49], Del Negro et al. developed a physiologically realistic mathematical model of neurons
in the preBötzinger complex that demonstrates the capability of the breathing rhythm
to be an emergent phenomena of the network and not explicitly controlled by central
pattern generators. Although there is very little known regarding the network structure of
the preBötzinger complex, it is possible, using the model in [49], to test various network
structures. Two geometric graphs with extreme values of λ2 were tested in [23] and [27].
One of the geometic networks had a value of λ2 = 0.025 and a second had a value of
λ2 = 0.974. The rhythmic output from the the network with λ2 = 0.025 was ragged
with fuzzy bursts, while outputs from the network with λ2 = 0.974 was sharp with clear,
regular bursts. The results of the two simulations, depicted in Figure 6, provide compelling
evidence for the utility of λ2 as a predictor of synchronization. It is easy to see that
the network with higher λ2 synchronizes more strongly than the other network. These
experiments provide further evidence that λ2 can be used to identify graphs (networks)
that are not likely to synchronize.

5.1.2. Pulse-coupled oscillators. In [31], the effect of synchronization of homogeneous pulse-
coupled oscillators on node-degree correlation (see Section 4.2) was studied. The dynamics
of pulse-coupled oscillators is given by

dφi
dt

= 1 +
k

n

n∑
j=1

AjiH(φj)∆(φi), φi ∈ [0, 1]

with ∆(φ) the sensitivity function (phase response curve) andH(φj) = δ(t−tj) the pulsatile
interaction function. In this notation, δ is a delta function with infinite point mass at 0
and tj is the firing time for oscillator j. The matrix Aji is the node-node adjacency matrix
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Figure 6. Raster plots of neuron output for two networks with disparate
λ2 values. A point at (x, y) indicates neuron x is spiking at time y. The
higher λ2 network displays much stronger synchronization among all nodes
as predicted, as well as a quicker breath frequency.

for the network (not the Laplacian as in (4)), while k/n is the coupling constant, which
includes the 1/n so that it is well-behaved in the thermodynamic limit n → ∞. Strogatz
and Mirollo [37] showed that in the case of all-to-all coupling, there is a globally synchronous
state φ1 = · · · = φn for almost all initial conditions, i.e. the initial conditions that do not
reach global synchrony are a set of measure zero.

The top panel of Figure 7(a) shows the phases φk(t) for 200 oscillators on a network
with negative node-degree correlation ρ ≈ −1. The global synchronization measure (or
coherence measure) given by r(t) = |

∑n
k=1 exp(2πiφk(t))|/n is displayed in the bottom

panel. Note that the global synchronization measure is 1 when the oscillators are globally
synchronized. Contrary to Figure 7(a) is a similar plot in Figure 7(b) for a network with
positive node-degree correlation ρ ≈ 1. In this case, complete synchronization occurs at
approximately T = 500 when r(500) ≈ 1.

Numerical experiments in [31] demonstrated that the proportion of initial conditions re-
sulting in a globally synchronous state is an increasing function of node-degree correlation.
For those networks observed to globally synchronize, both the mean and standard deviation
of time to synchronization decrease as node-degree correlation increases. Many networks
with negatively correlated node degree exhibited multiple coherent attracting states, with
trajectories performing fast transitions between them. A similar phenomenon was reported
in [53, 28] in networks of pulse-coupled oscillators with delay.

As stated in Section 3, the algebraic connectivity λ2 is known to have an effect on the rate
of convergence to the globally synchronous state when identical oscillators are coupled as
in the Kuramoto model or via an undirected Laplacian [25, 1]. Similarly, the eigenvalue
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Figure 7. (a) The top panel shows the phase φ of 200 oscillators as a
function of time for a network with node-degree correlation ρ ≈ −1, with
the corresponding global synchronization measure r(t) shown in the botton
panel. (b) Same as in (a) except with ρ ≈ 1.

ratio λN/λ2 is related to the propensity of identical oscillators coupled via an undirected
Laplacian to have a stable synchronous state [4]. Figure 8 shows the mean Laplacian eigen-
value λ2 (panel (a), solid line) and the ratio λN/λ2 (panel (b), dashed line) are monotone
increasing and decreasing functions of node-degree correlation, respectively (average over
1,000 random networks for each ρ). For pulse-coupled networks with negatively correlated
node degree, slow synchronization and reduced percentage of initial conditions that reached
global synchronization is observed.

5.2. Learning from Internet Design. The problems faced by designers of air transport
networks share some aspects with the design of an Internet router network. Many authors
have contributed to investigations of how a router network is constructed. Two references
in this field, [32] and [33], contain ideas central to our consideration of the design of air
transport networks. At one level of resolution, Table 1 points out the analogies between
these two network design problems. With regard to bandwidth, the Internet router de-
signer must weigh the trade-offs between many low bandwidth connections and fewer high
bandwidth connections. These trade-offs are akin to choosing between a few hub airports
in a hub-and-spoke system and choosing lower frequency airports that might arise in a
direct route system. Of course, there are many differences as well. The variation in the
size of the packets for the Internet is not nearly as great as the number of passengers on
planes of different sizes. In addition, although the FAA3 clearly defines the routes allowed
between airports, the links are as not hard-wired as they are in the Internet model. Still

3Federal Aviation Administration
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Figure 8. Laplacian eigenvalues λN (dashed line) and λ2 (solid line) in (a)
and ratio λN/λ2 in (b). Each point on the curves shows an average over
1,000 random networks.

there is much to be learned from the research efforts on the design of effective Internet
router networks.

Internet Air Transport
product packets planes (loaded)

constraint bandwidth airport capacity
competitors ISPs airlines

links hardwired FAA/Airlines
distributors routers airports

Table 1. Analogy between Internet router and air transport networks.

There has been an inordinate amount of interest in networks whose complementary cum-
mulative degree distributions have a fat tail or follow a power law. In [32] a figure is
presented which plots s(G) versus thruput when the degree distribution is fixed. The fig-
ure highlights the error in focusing exclusively on the form of the degree distribution. A
normalized s(G) value is plotted along the x-axis and a thruput metric is plotted along
the y-axis. Each data point represents the performance of a network, each of which has
an identical degree distribution following a power law. An unexpectedly wide variance in
the thruput performance of these networks in which the degree distribution is an invari-
ant is observed. Moreover, low (disassortative) s(G) instances lead, in general, to better
thruput performance. The authors in [32] point out that when sampling from this invari-
ant degree distribution it was much more likely to draw an instance in which s(G) is large
(assortative).
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6. Optmization: Perfect b-matching and s(G)

There has been little work done with regard to classifying optimization problems associated
with graph invariants. In this section we address optimization problems associated with
s(G) [30]. In this context, a natural optimization problem is:

Minimum Randić Index Problem. Given a degree sequence what is a graph realization
with the minimum Randić index?

We define the connected minimum Randić index problem as the minimum Randić index
problem with the additional constraint that the graph realization is connected. For a graph
G = (V,E) and a positive integer vector b = (b1, · · · , bn) ∈ Zn, a perfect b-matching is a
subset of edges M ⊆ E such that for node i ∈ V , the degree of i in the graph (V,M) is
bi.

An associated optimization problem is:

Minimum Weight Perfect b-Matching Problem. Given a positive integer vector b,
a graph G = (V,E) and a set of edge weights w : E → R, find a perfect b-matching with
minimum weight.

The minimum Randić index problem is equivalent to the minimum weight perfect b-
matching problem on a complete graph G with an appropriate choice of weights [30].
In [30] it was shown that by constraining the matchings to be connected, for an arbitrary
graph G, the minimum weight perfect b-matching problem becomes NP-Hard. In 2008,
Beichl and Cloteaux [5] investigated how well random networks generated with a chosen
s(G) can model the structure of real networks such as the Internet. The graphs produced
optimizing the s(G) resulted in better models than the ones that used simple uniform
sampling.

6.1. Formulation and Complexity. The minimum Randić index problem can be formu-
lated as a minimum weight perfect b-matching problem, which is solvable in polynomial time
[51]. Note that the perfect b-matching problem does not enforce connectivity. When con-
nectivity of solutions is desired, in [30] it is shown that even approximating the minimum
weight perfect b-matching problem with connectivity is NP-Hard.

Consider a graph G = (V,E), a positive integer vector b = (b1, · · · , bn) ∈ Zn and M ⊆ E, a
perfect b-matching. For a given b-matching, M , the graph induced by M is (V,M). Denote
the set of perfect b-matchings of a graph G by Pb(G). For edge weights w : E → R, the
minimum weight perfect b-matching problem requires finding the perfect b-matching with
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minimum weight, i.e., to calculate

(7) M∗(G) := arg min

{∑
e∈M

w(e) : M ∈ Pb(G)

}
.

To formulate an instance of the minimum Randić index problem as a minimum weight
perfect b-matching problem, set

(8) wij = bi · bj .
For these weights, solve (7) to obtain M∗(G). G∗ = (V,M∗(G)) is an optimal solution
to the minimum Randić index problem instance. Note first that it is feasible since the
degree of a node i ∈ V is bi by the definition of the perfect b-matching problem. Note also
that any feasible graph to the minimum Randić index problem is also a perfect b-matching
because the degree of any node i is equal to bi. Moreover, (8) implies

R(G∗) =
∑

(i,j)∈M∗(G)

bi · bj =
∑

(i,j)∈M∗(G)

wij .

Since any graph that is feasible to the minimum Randić index is also a b-matching, the
optimality of M∗(G) implies the optimality of G∗.

Therefore, an instance of a minimum weight perfect b-matching on a complete graph can
be constructed to solve the minimum Randić index problem. Since the b-matching problem
can be solved in polynomial time, finding the minimum Randić index of a graph can also be
done in polynomial time. Optimal solutions, however, are not necessarily connected.

Consider the following example. Given the degree sequence d = (3, 2, 2, 2, 2, 1), what
is a graph realization with the minimum Randić index? Let V = {v1, v2, v3, v4, v5, v6}
with b =

[
3 2 2 2 2 1

]
be given. Next form the complete graph G, with weights

corresponding to bi · bj for every node vi, vj ∈ V .

3v1 2 v2

2v3G : 2 v4

v5 2 1 v6

6

4

2

2

4

6

6

3
6 2

4

4

4

2 4
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0 6 6 6 6 3
6 0 4 4 4 2
6 4 0 4 4 2
6 4 4 0 4 2
6 4 4 4 0 2
3 2 2 2 2 0


Solve the minimum weight perfect b-matching for G and obtain G′:

3v1 2 v2

2v3G′ : 2 v4

v5 2 1 v6

6

6
3 4

4

4


0 1 1 0 0 1
1 0 0 0 1 0
1 0 0 1 0 0
0 0 1 0 1 0
0 1 0 1 0 0
1 0 0 0 0 0


R(G′) = 6 + 6 + 4 + 4 + 4 + 3 = 27

G′ is an optimal solution for the minimum weight perfect b-matching. The sum of the
weights is the minimum Randić index and the unweighted adjacency matrix is the corre-
sponding graph realization. Note that there are other solutions to the matching that will
produce the minimum Randić index and a different realization. That is, the solution is not
unique.

6.2. Solving the Minimum Randić index Problem. In this section, the input graph G
is assumed to be complete. A code written by Vlad Schogolev, Bert Huang, and Stuart An-
drews [24] that makes use of the GOBLIN graph library (http://goblin2.sourceforge.net/)
is designed to solve a maximum weight perfect b-matching problem. Given a weight matrix
H we transform these weights into a matrix H2 such that the maximum matching using
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H2 will yield the same solution as the minimum matching using H. To do this we take
a matrix M with ones in all positions except for the diagonal which has zeros. We then
multiply every entry by one more than the maximum entry of H. Then H is subtracted
from M yielding H2. An algorithm that will solve the minimum Randić index problem for
a given degree sequence is given below.

Algorithm to solve minimum Randić index with b-matching

Inputs: A, an adjacency matrix with degree sequence, d.
Outputs: G, the new adjacency matrix with degree sequence, d
and minimized Randic index, r.

Create a complete graph H of degree products
Transform H to H2 for b-matching code
Use b-match solver to get adjacency matrix, G of optimal solution
Calculate r = R(G)
return G and r

Figure 9. Solving minimum Randić index with b-matching

The algorithm in Figure 9 returns the minimum Randić index of a graph and a realiza-
tion. The b-matching code runs in polynomial time ([51]) and it is easy to see that the
transformation steps are done in polynomial time as well. Three types of randomly gen-
erated graphs to test the algorithm performance: Erdős-Rényi, geometric and scale-free.
The computational experiments are limited to graphs for which connected realizations are
known to exist. The Randić index before and after the optimization is recorded. After the
optimization the graph realization with the minimum Randić index is checked to see if it is
connected. In [30], computational experiments for a number of graph sizes and types are
reported. Here we include the results for 100 replications of three types of 100 node graphs
in table 2. Note that the number of graphs connected after the run plus the number of
graphs disconnected plus the number of graphs with no connected realizations is 100 for
each graph type.

Graph type connected disconnected no connected realizations
Erdős-Rényi 16 2 82
Geometric 30 6 64
Scale-Free 91 8 1

Table 2. 100 node graphs

The MATLAB functions used to generate the geometric and scale-free graphs are from
CONTEST: A Controllable Test Matrix Toolbox for MATLAB [52]. In addition, the nec-
essary and sufficient conditions for a set {ai} to be realizable (as the degrees of the nodes
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of a connected graph) are that ai 6= 0 for all i and the sum of the integers ai is even and
not less than 2(n − 1). This condition was used to discard graphs with a degree sequence
that had no connected realizations [9].

The left box plots for each of the 100 node graphs in Figure 10 show the percent difference
between the graph’s original Randić index and the minimum Randić index. The percent
difference is calculated from original−minimum

minimum × 100. In each pair of plots, the right box
plot describes the performance of the heuristic. The right box plots and the heuristic are
described in the next section.

0

10

20

30

40

50

60

70

ER1 ER2 GEO1 GEO2 SFN1 SFN2
Number of Nodes

Pe
rc

en
t d

iff
er

en
ce

(a) Comparing percent differences for Erdős-Rényi ,
geometric and scale-free graphs.

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ER GEO SFN
Number of Nodes

Pe
rc

en
t d

iff
er

en
ce

(b) Comparing percent differences between optimal
and heuristic solutions

Figure 10. 100 node graph results

6.3. Heuristic for Disconnected Realizations. The complexity of the minimum Randić
index problem subject to a connectivity constraint is not known. However, since some of
the graph realizations with the minimum Randić index were disconnected, we developed a
heuristic using two-switches to connect these realizations. (See Figure 11 for the algorithm.)
The heuristic performs a two-switch between every component until all the components
are connected. We know that a two-switch exists between any two-connected components
because they do not share any edges. Any edge can be used.

The heuristic was applied to all optimal solutions that were disconnected. In general,
the difference in Randić index from the minimum was not significant. The Randić index
changes the least after the heuristic in the Erdős-Rényi graphs. This percent difference is
calculated with after heuristic−minimum

minimum ×100. The number of graphs that used the heuristic
depended on the number of optimal graph realizations that were disconnected. Note that
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this is a different number for each graph type and size. See Table 2 for the 100 node graph
numbers.

Two-switch Heuristic

Inputs: A, an adjacency of disconnected graph
Outputs: A, the new adjacency matrix of connected graph

while the number of connected components in A is ≥ 2
do a two switch with components 1 and 2 to connect them

using two randomly chosen edges from each component

return A

Figure 11. Connecting disconnected graph with two-switch heuristic

Note that the method to connect the disconnected realizations may not produce graphs with
the best structure since there is only 1 edge connecting one component to another. Also
note that we do not need to check whether the randomly chosen edges are adjacent or not
since they are in separate connected components. In addition, once we connect components
1 and 2, component 2 becomes part of component 1 and component 3 becomes the new
component 2. Therefore we can always connect components 1 and 2.

7. Conclusion

The importance of how network invariants affect the dynamics of a process on the network
(e.g. respiration, current, traffic) has been highlighted. In studying the potential effect of
incremental changes in network invariants on network dynamics, the degree distribution of
a network was held constant while other network invariants were examined. In particular,
results demonstrating the effects of assortativity, s(G), and eigenvalues of the Laplacian
on network dynamics were presented.

In section 3, the connection between λ2 and other network dynamics is studied. Research
supporting the link between λ2 and synchronization are provided as well as an inverse re-
lationship between λ2 and the diameter of the network. Section 4 summarizes algorithms
that allow sampling (sometimes uniform) from the family of networks with a fixed degree
sequence. The ability to sample uniformly is critical in any research attempting to dis-
cover the effects of network invariants. In section 5 a number of network applications are
described including neuronal networks for respiration in mammals, pulse-coupled oscilla-
tors, internet router networks and air transportation route networks. Section 6 focuses on
optimizing s(G), a network assortativity metric. A novel connection with minimum weight
perfect b-matching problem as well as computational results is given.
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