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Cells integrate many inputs through complex networks of interacting signaling

pathways. Systems approaches as well as computer-aided reductionist approach-

es attempt to “untangle the wires” and gain an intimate understanding of cells.

But "understanding” any system is just the way that the human mind gains the

ability to predict behavior. Computer simulations are an alternative way to

achieve this goal—quite possibly the only way for complex systems. We have new

tools to probe large sets of unknown interactions, and we have amassed enough

detailed information to quantitatively describe many functional modules. Cell

physiology has passed the threshold: the time to begin modeling is now.

As cell biology entered the 21st century, a conver-
gence of factors promised to revolutionize the way
state-of-the-art research is done. On the one hand,
there has been an explosion of new data: some
from “-omic” technologies and other high-
throughput methods (but often of unknown rele-
vance and quality, and sometimes even difficult to
catalog in a consistent way) and some from new
imaging and in vivo technologies that can reveal
molecular interactions in a real and quantitative
way (but often difficult to analyze or to extend to
large scales). One common theme is the fact that to
properly leverage these data, we need computers to
process them and to help us use them for generat-
ing and testing hypotheses. Traditional bioinfor-
matics is being transformed and complemented by
the expanding systems biology and the emergent
computational cell biology (6, 29, 32, 55). Many dif-
ferent approaches exist, ranging from the very
abstracted, high-level methods of inferring con-
nectivity maps to the very specific, mechanistic,
kinematic methods of detailed quantitative spatial
simulations. Which of these approaches are most
useful is an open debate—and the answer likely
depends on the specific system studied and the
specific goal of the biologist/modeler. It is clear,
however, that we will need both to refine all of these
methodologies and to develop effective strategies
to connect them and share data between them to
fully unravel the complexity of intracellular molec-
ular networks (30). The latter is a prerequisite for
the complete determination of biological sys-
tems—a lofty goal, but one that, in view of the cur-
rent progress in biological investigative techniques,
mathematics, and computer science, may be
achievable over the long term (54).

This review explores the promises and pitfalls of
computational modeling in cell biology, focusing
on paradigms and examples from the world of

intracellular signaling, with special emphasis on
the role of morphology and spatial simulations.
However, the scope of intracellular signaling net-
works is increasingly difficult to delineate, given
the multiple molecular interactions present inside
the cell. Thus it is not clear where to draw the
boundary between signaling networks on the one
hand and either metabolic networks or gene-regu-
latory networks on the other. We do not attempt to
make such clear distinctions here, and we will
mainly use the more global view of modeling and
simulating intracellular molecular networks. We
conclude that the field of cell biology is ripe for
widespread use of computational approaches and
that the best avenue for progress is to combine top-
down, systems-level modeling with bottom-up,
detailed quantitative modeling.

We will review both of these classes of method-
ologies (with more detail and emphasis on the sec-
ond) in an attempt to guide the reader as to their
relative roles and appropriateness for tackling par-
ticular modeling needs related to intracellular sig-
naling.

The Top-Down View: Reverse
Engineering Molecular Networks

More than three decades have passed since the
measurements of changes in cytosolic cAMP and
free Ca?* concentrations in response to agonists
introduced the concept of second messengers and
intracellular signaling pathways. Until recently,
these pathways have been mostly studied in the
typical reductionist fashion, with researchers try-
ing to isolate and characterize each step, from
receptor activation to final effect. A pervasive
assumption was that these are literally pathways,
i.e., that they propagate information linearly
(amplification cascades notwithstanding), and that
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alternate pathways generally interact at the begin-
ning (e.g., a receptor that activates or inhibits more
than one pathway in the same cell) or at the end
(e.g., synergistic or antagonistic effects of kinases
belonging to different pathways on the final effec-
tor proteins) but rarely at the level of the many
intermediate steps. However, data from traditional
biochemistry and molecular biology as well as the
systematic data gathering of genomics and pro-
teomics has shown an ever-increasing number of
participants in these pathways and a much more
complex and subtle interaction between them, and
thus we will need computational approaches to
properly resolve them (41).

Recently, as “signaling pathways” became “sig-
naling networks,” a flurry of interest in applying
network theory and related techniques to the study
of intracellular signaling developed. The premise
that the analysis of a complex network as a single
large functional ensemble will allow us to infer its
emergent properties and behavior is very attrac-
tive.

A classical example of a well-developed map of
intracellular molecular networks is the metabolic
network. Mathematical and engineering tools have
been applied to the study of metabolism, and they
have been very successful, both at prediction of the
behavior of the system and at identification of bio-
logical motifs and modules (63). Universal princi-
ples such as robustness and control mechanisms
have been extracted, and metabolic control analy-
sis has become a very well established methodolo-
gy for quite some time, with its own set of laws and
practical applications (15). However, at present,
studies of metabolism are not a good template for

“The premise that the analysis of a complex
network as a single large functional ensemble
will allow us to infer its emergent properties

and behavior is very attractive.”

approaching signaling (and gene) networks. As a
result of decades of detailed biochemical studies,
the individual molecules participating in the meta-
bolic network are very well characterized, and
essentially all links between the nodes are known,
in most cases, at a very good level of quantitative
detail (rate laws, binding, and regulation parame-
ters). Although a few subcomponents of signaling
pathways are characterized to a similar extent—
good examples are Ca?* signaling in cardiomy-
ocytes (23, 52) and EGF receptor signaling in
fibroblasts (51, 62)—many of them are not, and a
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large number of interactions (links in the network)
are not known at all; this lack of knowledge is even
more prevalent for gene-regulatory networks.
Additionally, metabolic networks are probably at
least an order of magnitude smaller in terms of
numbers of components and interactions.

It is almost a cliché to say that the most impor-
tant characteristic of a network is its architecture,
but what does architecture actually mean? It is the
collection of features present in the map of the net-
work. Therefore, one of the current challenges in
the case of signaling networks is to first discover the
actual map of the network (1, 10). The question of
what exactly to include (genes? proteins? small
molecules? all of the above?) and at what granular-
ity (modules? whole cell?) is subject to debate.
Traditionally, network maps have developed slowly
as the result of painstakingly combining and recon-
ciling the results of many separate studies of indi-
vidual molecules and their intracellular functions
and interactions. However, given the large number
of components involved and the high level of inter-
activity, and given the recent availability of high-
throughput experimental data for both molecular
interactions and functional analyses, deciphering
maps of intracellular networks has recently fallen
under the domain of systems biology and compu-
tational biology.

One school of thought advocates the use of sta-
tistical methods developed in the field of complex
systems studies (31). These methods promise that
we can infer the structure of the network, i.e.,
“learn the model,” with little detailed and accurate
information about all of the nodes and their inter-
action. Large-scale datasets appropriate for this
purpose are being generated by the advent of
recent high-throughput technologies (34). This
approach has been named alternatively as infer-
ence, system identification, or reverse engineering.
The mathematical tools that have proven to be very
useful for this purpose are probabilistic graphical
models, such as Bayesian networks, Markov net-
works, or chain graphs (18). The details of applying
these methods to biological network reverse engi-
neering is beyond the scope of this review.
However, we must mention that, particularly in the
study of gene networks and genetic regulatory
mechanisms, there have been a number of recent
examples where this approach was successfully
applied to identify new regulatory links or to infer
modules of related genes from microarray expres-
sion data; a prototypical example (53) is illustrated
in FIGURE 1. The individual network motifs and
critical nodes identified would become the subject
of the traditional experimental research, which is
often needed to eventually separate epiphenome-
non from causation (e.g., when is coexpression
actually coregulation?). Once new hypotheses are
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A Strategy for network inference and module characterization
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FIGURE 1. An example of network inference and module characterization from S. cerevisiae gene expression data sets

A: an automated module network procedure takes as input a gene expression profile data set and a precompiled set of candidate control genes.
The procedure is iterative and determines both the partition of genes to modules and the regulation program for each module and is followed by
testing for enrichment of gene annotations and cis-regulatory binding site motifs. B: sample module identified [top, a positive signaling loop involv-
ing a signaling molecule (Sip2), a transcription factor (Msn4), and targets] and the dynamic behavior encoded by it (bottom). The coordinated
expression changes in signaling molecule and targets allow signaling molecule (but not transcription factor) to be correctly inferred as regulator.
Figure adapted from Ref. 53, with permission (http://www.nature.com).

being tested, the confidence in the network struc-
ture grows and the model can be refined by target-
ed experiments using perturbation analysis.
Additionally, once the map is known with some
certainty, perturbation analysis can be even more
useful, since it can generate additional testable
predictions of network behavior without the inti-
mate quantitative knowledge of individual interac-
tions (20).

However, top-down network inference usually
fails in the case of large, heavily interconnected
networks. Fortunately, intracellular networks,
although at first glance appearing to fall into this
category, in reality are rather sparse, i.e., the aver-
age number of interactions of any given node is sig-
nificantly smaller than the total number of nodes
in the network (e.g., an individual kinase may
phosphorylate a large number of targets, but this
number is small compared with the thousands of
expressed proteins in a human cell). Besides being
sparse, another common feature of intracellular
networks is that the number of connections per
node does not have a normal (Gaussian) proba-
bilistic distribution. Rather, a few select nodes
exhibit large numbers of connections, but the

majority have a much smaller number of connec-
tions, forming a so-called scale-free network (7).
The highly interconnected nodes can be viewed as
“common currencies” or “hubs” through which the
flow of information does fan in and out in recurring
bow-tie patterns (11).

Reductionism Redux: The Devil is in
the Details

During a century of cell biology studies, many new
techniques have been added to the arsenal of the
expert researcher; a few of them are quite revolu-
tionary, and some of the new computational mod-
eling approaches promise to fall into this latter cat-
egory. However, the road to success has always fol-
lowed the paradigm of applying the right tool for
the problem at hand, not allegiance to the fad of
the day or to a particular camp promoting a singu-
lar technology. So what does the cell physiologist
bent on computational modeling learn from these
high-level approaches? And when should we turn
to different, more quantitative methods? The first
subsection below analyzes some of the insights
revealed by the quest to untangle connectivity
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maps through network inference studies. The fol-
lowing four subsections detail some of the specific
contexts of cell physiology that often call for shift-
ing the focus on quantitative modeling and simula-
tion of individual subsystems. We identify three
layers of complexity in signaling networks that
make accurate characterization and predictive
simulations difficult when high-level modeling
approaches are used exclusively (stochastic vari-
ability, dynamic evolution, and spatial distribu-
tion), and we also show examples of using comple-
mentary methods to overcome such difficulties.
These examples illustrate some of the multifaceted
approaches available today to the savvy modeler.

Network modules

A common feature of intracellular networks is that
the connections between nodes are neither ran-
dom nor regular. Often, there are numerous local-
ized interactions among groups of nodes and few
distant connections traversing many such groups
of nodes, thus forming functional “modules.” Such
large, sparse, scale-free, and modular networks are
common in natural or designed complex systems
(e.g., the market economy, the internet, VLSI
chips), but they are not ubiquitous (e.g., neural
nets, either biological or artificial, are neither
sparse nor modular). However, metabolic, signal-
ing, and gene-regulatory networks are most likely
to turn out to be in all cases sparse, scale-free, and
modular, due to the fact that such networks are
best suited to balance adaptability and robustness
(24, 58), and thus this is the most likely architecture
in the evolutionary design of systems that are criti-
cal for species survival. Detailed studies in many
different organisms of the best-characterized intra-
cellular network, the metabolic network, have con-
firmed the ubiquity of a pattern of hierarchical
modularity (50). It is therefore appropriate to ask

whether we should rather focus on the detailed
analysis, modeling, and validation of the individual
modules, which can be then used as building
blocks for more comprehensive quantitative mod-
els that could eventually become very accurate.

This is in essence the traditional reductionist
approach to science, and the application of mathe-
matical and computational tools to characterize
individual modules has been very successful. Some
functional modules can be very simple and are rec-
ognizable after a cursory look at a wiring diagram,
such as the well-known feedback or feed-forward
loops. However, experiments have shown that,
even for such simple modules, careful mathemati-
cal analysis is necessary to predict the signal-pro-
cessing characteristics of the module (the dynamic
behavior encoded by it), because the quantitative
details of the kinetic parameters governing the
interactions usually make the system highly non-
linear. For example, a negative feedback loop can
generate either homeostasis (adaptation) or an
oscillatory response, and a positive feedback loop
can generate hypersensitivity (thresholding) or
bistability (5, 45).

It is therefore more appropriate to characterize a
module not by its wiring principles but rather by the
type of response it generates. A simple analogy is
that in an electrical circuit it is more important to
know whether a specific circuit component func-
tions as a transistor or as a diode than to know
whether it is a semiconductor or a vacuum tube
(35). When building such a “parts list” of a cellular
network, we find repeated occurrences of a relative-
ly small number of different types of modules,
among the most common types being amplifiers,
attenuators, oscillators, “push buttons” (when stim-
ulus needs to be maintained to maintain the
response), “toggle switches” (when response
remains stable after the stimulus disappears—often
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very low number of molecules involved. The magni-
tude of this effect depends on diffusion coefficient and stimulus strength. If mobility of the molecules is low (D = 0.001 wm?/s, Ca%* = 0.15 pM; left),
stochastic runs approximate the deterministic simulations quite well at low stimulus values (Ca?* = 0.15 pM) but show increasing deviations as the
0.25 wM), mostly as prominent fluctuations at steady state. If mobility is higher (D = 0.01 um?/s; right), the behavior of
stochastic simulations is completely altered, showing wildly differing patterns among separate runs with the same parameter values (including possi-
ble oscillations between the low and high MAPK concentrations in lieu of a final steady state).Figure adapted from Ref. 4, with permission.

stimulus is increased (Ca?* =
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responsible for irreversible responses and check-
point controls), and “sniffers” (short-lived response
only when stimulus changes in intensity—often
responsible for adaptation/desensitization) (60).
Predictive models (based on the detailed under-
standing of the underlying biology and mathemat-
ics) of such basic functional modules allow us to
choose appropriate strategies to target control
mechanisms in the network, and these models raise
the prospect of being able to alter the network
architecture by rewiring or constructing new mod-
ules (25). Recent proofs of concept have been the
successful design and expression of synthetic
genetic toggle switches and oscillators (12, 19).

Stochastic variability

One problem that we often face with generic mod-
els of intracellular networks is created by the fact
that many molecules in the network are present in
low copy number—this is especially true of mRNA
and proteins but also of small molecules (e.g., in a
volume of 0.5 pm diameter, which is comparable
with the size of the lumen of a mitochondrial crista
invagination or to the area surrounding a sar-
coplasmic reticulum cistern, a concentration of 100
nM Ca?* turns out to be only 4 Ca** ions). Some of
the methods discussed above employ probabilistic
techniques and thus can be adapted to capture
noise and stochasticity, but the problem lies in the
fact that individual modules can dramatically alter
their encoded behavior when only small numbers
of molecules are involved. FIGURE 2 shows exam-
ples (3, 4) where such effects can be easily grasped
intuitively. If a module that exhibits bistability
operates with small numbers of molecules so that
stochastic noise is significant, random fluctuations
can overcome histeresis; instead of bistability, such
a system will oscillate between the normally stable
steady states according to some function of the
noise frequency! Similarly, large stochastic fluctua-
tions will alter the behavior of a module that
encodes hypersensitivity by increasing the sensitiv-
ity and decreasing the sharpness of thresholding
up to the point that, when measured in large popu-
lations, hypersensitivity is transformed into a grad-
ed response. Therefore, in such cases we must
resort to kinetic models using Monte Carlo simula-
tions or to stochastic differential equation approxi-
mations to properly describe the system (see the
references for the examples above and also the sec-
tion on methods an tools below).

Dynamic behavior

A second problem is time course and evolution.
Temporal regulation and control is often hard to
extract using Bayesian networks or similar meth-
ods. A simplistic argument is that molecular inter-
action data can be meaningless for a pair of pro-

teins that are not expressed at the same time during
the cellular process studied. To account for this,
recent studies have used time series data to help
identify a causal relationship during reverse engi-
neering of network structures (44). Additionally,
other mathematical approaches have been devel-
oped to predict dynamic systems behavior without
necessarily knowing from the beginning the exact
makeup of the system. These are fundamentally dif-
ferent from the global network inference studies
because they focus on the importance of actual
quantitative descriptions of the system embodied
by the numerical parameter values inside the
model. Ideally, kinetic descriptions of individual
components should be translated into systems of
differential equations (deterministic or stochastic)
that can be solved numerically to predict the sys-
tems’ evolution over time. However, inaccuracies
can easily compound when simulating temporal
changes and can decrease the predictive power of
the model. Therefore, modelers have searched for
general principles to sort out the complex dynamic
behavior of realistic models of regulatory networks,
using dynamical systems theory. Kinetic equations
may seem like a good starting point, since they
actually predict the evolution of the system, but
often they have a huge parameter space that defies
optimization. Moreover, for the understanding of
the system, the perfect fitting of kinetic equation
parameters can sometimes be less important than
characterizing the properties of a particular state,
e.g., whether it is it resistant or not to perturbations
or what specific state variables (e.g., component
concentrations) or parameter values are critical to
its projected future. When applying kinetic equa-
tions to a state of the system, we define a vector field
in state space that determines the temporal behav-
ior of the system. Vector fields can be analyzed
mathematically to identify important properties
such as stable and unstable steady states, check-
points, attractors, and limit cycles, using tools such
as bifurcation diagrams. A good example are studies
of the cell cycle, in which the analysis of initial,
mostly theoretical models (47) was able to capture
many aspects of in vivo and in vitro behavior and to
suggest critical experiments, which eventually led
to the development of almost complete quantita-
tive models able to predict not only normal behav-
ior but also that of mutant phenotypes (9).

Spatial models

The third problem arises from the fact that in many
cases we don’t deal with a simple homogenous bag
of molecules. Even prokaryotes, which usually are
devoid of compartmentalization, appear to have
numerous supramolecular complexes that define
regions of specialized function. Calculations from
first principles of molecular collision probabilities
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due to normal random motion in volumes on the
order of 1 um? or larger suggest that restricting the
spatial mobility of enzymes may be the only mech-
anism to achieve reaction rates that are not close to
zero (A. Slepoy, Sandia Nationa Laboratory, person-
al communication). Additionally, intracellular con-
centration gradients and spatial organization of
molecular complexes can play a significant role in
regulating microbial activities such as chemotaxis
and quorum sensing and are more common than
originally thought (40, 57).

Mammalian cells have multiple internal com-
partments, and the possibility of interactions
between different molecules is tightly controlled.
Processes such as translocation of proteins to and
from membranes are commonplace, and fluxes
across membranes need to be specifically taken
into account in many models. Internalization and
endocytosis of surface receptors frequently play an
important role in shaping the response to signals;
EGF signaling is a good example (26). An extreme
example of exquisite spatial organization that regu-
lates signaling is found in cardiomyocytes. There,
excitation-contraction coupling and force genera-
tion is characterized in good quantitative detail
and has seen many successful comprehensive
modeling efforts across different scales (these are
beyond the scope of this review and have been
recently discussed in the first issue of the new
Physiology; see Ref. 46). Eukaryotic cells can also
develop intracellular concentration gradients of
active participants in signaling cascades such as
the MAPK pathway (33). Such gradients can also
occur in metabolites and even at very small spatial
scales, such as the submicrometer intracristae sacs
of mitochondria (I. I. Moraru, unpublished data,
and Ref. 38). Some recent theoretical work aimed to
include diffusion in the mathematical analysis of
network control (48), but the applicability of such
approaches may be limited to parts of signaling
networks that do not span multiple compartments.

How spatial organization controls signal trans-
duction (and even just the role of simple processes
such as diffusion) is often difficult to determine
without exact knowledge of the morphology and of
some of the critical kinetic parameters. Therefore,
studies of well-known spatial phenomena (such as
intracellular Ca?* waves and transients) have
prompted (and required) the development of
detailed models with quantitative descriptions of
all of the critical components. FIGURE 3 illustrates
an example of the subtleties involved in spatial
modeling: Ca** transients operated by the same
signal-transduction mechanism [inositol trisphos-
phate (IP,)-induced Ca?* release from the endo-
plasmic reticulum] show different responses and
different mechanisms of regulation in three sys-
tems with different morphologies and spatial
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scales (L. M. Loew, unpublished data, and Refs. 14,
16, and 61). In large Xenopus oocytes, bistability
determines a tidal wave, and its propagation is
dependent on the propagation of an “IP, wave.” In
differentiated neuroblastoma cells, cell morpholo-
gy and the uneven distribution of the endoplasmic
reticulum shape the characteristics of the transient
Ca?* wave, which may be cell-wide, abortive, or
limited to the soma, depending on the site of the
extracellular stimulus. In Purkinje cell spiny den-
drites, the kinetics conspire to provide coincidence
detection of repetitive stimuli and generate Ca**
transients that are either localized to a spine or
propagating to the dendrite lumen.

The Tools of the Trade: Data,
Software, Languages

Finally, we turn to reviewing some of the specific
technologies developed over the past few years that
were critical for the coming-of-age of computa-
tional cell physiology.

Data gathering

There are two fundamental requirements for com-
putational approaches: I) comprehensive experi-
mental data and 2) a proper analytical framework.
The required data are simply concentrations and
distributions of molecules (state parameters of the
system), their mobility constants, and the binding
kinetics and rate laws of their interactions (dynam-
ic parameters of the system). The first type of data
is now readily obtainable for gene and protein
expression on a large scale (microarrays and mass
spectrometry techniques—genome, transcrip-
tome, proteome), or, when necessary, comple-
mented by traditional methods focused on individ-
ual molecules.

Much has been made of the uncertainty present
in this data, as well as of the sheer lack of quantita-
tive information regarding the dynamic parame-
ters. If history is any guide, however, we believe that
technological advances and the combination of
directed, large-scale approaches with the work of
thousands of individual researches will make it
only a matter of time until the data are available.
After all, as little as 15 years ago the (then fledgling)
Human Genome Project was argued by some to be
intractable, and today we are discussing the future
possibility of routine genome sequencing of indi-
vidual personss for diagnostic purposes (27)! Also,
new techniques have been perfected to obtain in
vivo data with full spatial information. Confocal
microscopy can now obtain complete, full, four-
dimensional (that is, three-dimensional over time)
protein expression data not only in single cells but
during the full course of embryogenesis of an entire
organism such as Caenorhabditis elegans (43) and
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can do it so efficiently that a small group of collab-
orating laboratories could record it for all of the
open reading frames of the organism’s genome in a
reasonable amount of time (W. Mohler, University
of Connecticut Health Center, personal communi-
cation). Moreover, modeling approaches help
direct experiments for acquiring high-quality,
quantitative, small-scale data for the critical com-
ponents of the studied system. Techniques such as
fluorescence recovery after photobleaching
(FRAP), fluorescence loss in photobleaching (FLIP),
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FIGURE 3. Simulations of inositol trisphosphate-

and fluorescence correlation spectroscopy (FCS)
today allow accurate measurements of real diffu-
sion coefficients and binding constants in vivo (49).

Data and model exchange

A possibly larger concern is the limited set and rel-
ative lack of maturity of available computer tools to
analyze and use this data to build models and run
simulations (even though there has been an explo-
sion of development efforts in this regard). We can
distinguish four broad categories of features of

B N1E-115 neuroblastoma

[Ca2*] spine (M)

N A
|

dependent Ca?* signaling at different spatial scales

The same basic pathway [inositol trisphosphate (IP,)-induced Ca?* release] was modeled in cells with widely different morphologies and different
parameter values (such as IP, receptor density and affinity or Ca?*-buffering capacity). In the giant (millimeter-sized) Xenopus oocyte (A), a bistable
behavior determines a tidal Ca?* wave after a local trigger of increased Ca?* (1 wM) and IP, (0.5 wM). In differentiated N1E-115 neuroblastoma cells
(B), bradykinin induces a transient Ca?* elevation with characteristics dependent on morphology and receptor distribution; a cell-wide Ca?* wave is
produced in the case of global stimulation (not shown) or focal stimulation at the neurite (B, middle), but the rise in Ca?* fails to propagate in the
case of focal soma stimulation (B, left) or distal neurite stimulation (B, right). Cerebellar Purkinje cells (C, left) have a large dendritic tree with uniform
endoplasmic reticulum distribution (visualized by IP, receptor fluorescent labeling), and dendrites have thousands of micrometer-size protrusions
called spines (shown in an electron micrograph). IP,-induced Ca?* rise by stimulation of individual spines has a complex pattern highly dependent on
spine morphology and specific kinetic parameters; it may or may not propagate to the dendritic shaft and adjacent spines as a function of the fre-
quency and type of stimulation (not shown) and exhibits supralinearity and thresholding (C, middle, showing the result of increasing number of puls-
es of IP, stimulation) as well as coincidence detection of independent stimuli that produce extracellular Ca?* influx (C, right, showing the result of
varying Ca?* stimulations timed at 100 ms or 1 s after a train of pulses of IP, stimulation). Note that subsequent signaling after cytosolic Ca?* rise
(e.g., Ras/MAPK pathway) at the level of the spine can show significant stochastic effects (see also FIGURE 2). A: adapted from Ref. 61, with permis-
sion; B: adapted from The Journal of Cell Biology, 1999, 147, 929-935 (16), by copyright permission of The Rockefeller University Press.
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these tools: data handling, model building, simula-
tion, and analysis. Many public data repositories
and databases exist; at the time of this writing, the
Pathway Resource List (http://www.cbio.
mskcc.org/prl/) had links to 154 internet pathway
resources, most of which are databases containing
information such as protein-protein interactions
or metabolic reactions. However, we need more
flexible information management systems to
query, annotate, curate, and transform collected
data in a format appropriate for modeling, and we
are still far from a real biological information sys-
tem that some researchers have called for (13)—
one that could come close to the coverage and
functionality of the information management sys-
tems that exist in other physical sciences (e.g., GIS,
the Geographical Information System).

We have to overcome many problems such as
data curation, standards, and even accessibility; for
example, the most comprehensive curated data-
base of biological networks at present, Pathways
Knowledge Base (Ingenuity, Mountain View, CA) is
a commercial product available at only a few major
academic institutions. The issue of standards is
most critical due to the large variety of public and
custom software tools used for modeling and sim-
ulation (see below). To facilitate the persistence,
comparison, and reuse of computational models
among different software platforms, we need a
common vocabulary and a common language to
describe them. Beyond unique identifiers for the
various molecules (which already exist in public
databases such as KEGG, SwissProt, GenBank,
etc.), we need a comprehensive public ontology
that comprises molecules, structures, and biologi-
cal functions. From the many efforts underway (see
Open Biological Ontologies at http: //obo.source-
forge.net for a current listing), the Gene Ontology
and BioCyc projects are quite promising for intra-
cellular networks.

The next level is creating a platform-independ-
ent language that would describe the abstractions
of amodel, replete with quantitative detail, mathe-
matical formulations, and possibly input and out-
put data. Extensible markup language (XML)
dialects have been developed in recent years for
this purpose, most notably CellML (37) and SBML
(17, 28). These two differ both in syntax and in
scope: CellML has better support for metadata,
spatial information, and mathematical descrip-
tions (using MathML standard), whereas SBML was
originally designed to be more specific for pathway
and network models. The latter, which was devel-
oped as a community effort, has been broadening
its scope and seems to be rapidly gaining accept-
ance as the current standard (currently, more than
60 software packages claim to provide at least some
level of SBML support; see http: //www.sbml.org).
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Finally, such ontologies and languages provide the
fundamentals for more comprehensive pathway
information exchange frameworks such as BioPax
(http: //www.biopax.org), which uses a new stan-
dard developed by the W3C consortium, the Web
Ontology Language (OWL), that goes beyond XML
and Resource Description Framework (RDE a gen-
eral standard for, among other uses, metadata rep-
resentation); it was specifically designed for use by
applications that need to not only to present but to
process the content of information, thus facilitat-
ing machine interpretability.

Model building and simulations

We will skip a detailed review of model inference
methods (discussed in THE Tor-DowN VIEW, above),
since most of that type of research uses dedicated
software to match the mathematical approaches
chosen by the particular group of researchers
involved, and we refer the reader to reviews in
bioinformatics journals for more technical details.

We will focus now on model building and simu-
lation methods based on a known/hypothesized
network connectivity. This was also often achieved
as a customized development, but there are an
increasing number of “generic” tools that biologists
other than the original developers or their collabo-
rators can use (and have used). The fundamental
role of these tools is to facilitate a qualitative and
quantitative description of the network map (using
graphical interfaces or table-based reaction lists),
and some will automatically create its mathemati-
cal representation (a system of equations).
Whether or not created by hand, the latter is the
input to simulation engines that use numerical
methods to generate data such as the predicted
time course of the networks’ state variables given a
set of initial conditions. Early entries [e.g., Gepasi
(42) and GENESIS/KinetiKit (2)] were focused on
simple biochemical reaction networks under con-
ditions in which uniform concentrations of mole-
cules are expected (such as bacterial metabolic
reactions). Thus the spatial representation of the
system was limited to simple compartmental dis-
tributions, which translate in mathematical terms
into a system of ordinary differential equations
(ODEs). Systems of ODEs have many well-known
numerical solvers available, are not very computa-
tionally expensive, and allow relatively easy model
validation and analysis by methods like flux control
analysis and parameter sensitivity calculations.
However, they are not sufficient when spatial and
stochastic aspects are involved.

When diffusion and actual specific morphologies
have to be taken into account, if the system is mod-
eled in a deterministic way, the mathematical rep-
resentation will include partial differential equa-
tions (PDEs). Numerical solution of systems of
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PDEs can easily become computationally
intractable at physiologically relevant spatial reso-
lution and time courses, and analysis methods
such as parameter sensitivity are essentially an
open problem. However, since systems of PDEs are
a common mathematical formulation for many
other processes in physics or engineering (flow,
reactors, explosions, etc.), a number of simulation
engines for PDEs have been available for quite
some time, ranging from relatively simple commer-
cial products, such as FEMLAB (Comsol,
Burlington, MA), to high-end versions that can take
advantage of massively parallel supercomputers,
such as Sandia National Labs MPSalsa (http://
www.cs.sandia.gov/CRF/MPSalsa) or Pacific
Northwest National Labs NWPhys (http://
www.emsl.pnl.gov/nwphys). Even so, very few
tools have been developed that are able to simulate
deterministic spatial models and that were specifi-
cally designed for modeling biological processes,
and most are rather specific (e.g., Continuity from
UCSD Cardiac Mechanics Research Group for car-
diac modeling). One exception, which is generic
and already relatively mature, is The Virtual Cell
(http://www.vcell.org), developed at the National
Center for Cell Analysis and Modeling (36, 56). It is
an integrated framework for modeling cell-biologi-
cal processes that is deployed as a freely accessible
distributed application to be used over the
Internet, and it includes graphical model-building
tools; automated math generation; numerical
solvers for simulating both compartmental and
spatial problems covering reactions, fluxes, diffu-
sion, advection, electrical potential, and currents
on analytic or experimental geometries; and model
and results export and analysis tools.

Stochastic simulations have been used for a long
time in simulating the dynamics of systems with a
small number of states (e.g., modeling the kinetics
of membrane channels), usually by using pseudo-
random number generation (so-called Monte Carlo
simulations) and the Gillespie algorithm (22).
Many ad hoc implementations have been recently
used to simulate intracellular networks under sto-
chastic regimes, particularly gene-regulatory net-
works (39). Solving stochastic differential equa-
tions is an acceptable approximation when some of
the components of the process are abundant
enough to be treated using a continuous formula-
tion (i.e., solving the Langevin equation).
Stochastic simulations have the additional advan-
tage that they can also solve spatial problems; even
though they become computationally expensive
when the number of molecules treated discretely is
large, they have recently become a realistic alterna-
tive to PDE simulations. This is due to a combina-
tion of more efficient software implementations,
the exponential growth in computer CPU perform-

ance, and the fact that stochastic numerical algo-
rithms lend themselves more easily to parallel pro-
cessing (thus being able to leverage today’s large
computer clusters or grid server farms); recent
developments in numerical algorithms (8, 21)
promise to further expand the range of practical
applicability.

MCell (59) is one of the first software platforms
that is a general-purpose full stochastic simulator,
and although it was initially practical only for small
problem domains (e.g., signaling at one neuromus-
cular junction) and did not allow for direct treat-
ment of binding interactions, the newest version
(to be released soon) does not have these limita-
tions (J. Stiles, Pittsburgh Supercomputing
Institute, personal communication). Other recently
developed stochastic simulators show scalability to
the point of metabolic network module simula-
tions, including explicit tracking of all small and
large molecules involved (except water and elec-
trolytes) over an entire average-sized bacterial cell
(e.g., ChemCell; S. Plimpton, Sandia National Labs,
personal communication). Additionally, several
large simulation platforms such as E-Cell, Virtual
Cell, BioSpice, etc. now include stochastic capabil-
ities.

Conclusion

Proper understanding of the mechanisms of dis-
ease as well as effective design and creation of new
therapies for disease and aging is hampered by the
complexity of cellular interactions. We made a
point at the beginning that the essence of under-
standing is just the ability to predict a system’s
behavior. Whether this is achieved by finding some
(more-or-less simple) sets of rules or laws that gov-
ern the system (e.g., “mechanisms”) or by simulat-
ing a whole network on a computer is ultimately an
academic question. Given the complex weave of
intracellular interactions governed by many non-
linear and often stochastic relationships, the com-
puter-based approach appears to be the only prac-
tical solution.

To elaborate, let us take modern drug develop-
ment as an example. Traditionally, the bottleneck
was the lack of compounds to modulate the activi-
ty of a specific target (receptor, enzyme, gene, etc.).
Advances in chemistry and high-throughput
screening techniques have alleviated this, but even
when we have a highly selective and effective mod-
ulator for the target of interest, we are often faced
with the disappointing result that the final effect on
the cell is either not significant or is different from
what we expect. Many times this is due to the fact
that the target is part of a complex network, which
may either be robust with respect to that particular
node or have poorly understood emergent proper-
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ties. Many of the drugs that were found to be effec-
tive in practice by trial and error appear to be quite
promiscuous, influencing many cellular targets.
Therefore, today the questions most difficult to
answer seem to be: 1) which are the best targets to
choose and 2) how should they be influenced
(inhibit, activate, knockout, overexpress, etc.) to
achieve a desired effect? One recent approach has
been to identify drug “signatures,” a collection of
the effects of a known chemical on many network
components (e.g., in the search for kinase
inhibitors as potential anticancer drugs), which
can be used both to probe the characteristics of the
network and to guide in the search for better drugs.
Obviously, the ideal answer would be to have a
well-characterized model of the pathway(s) of
interest through which simulation predictions can
identify which is the best combination of “buttons
to push” to obtain the desired effect.

There is hope (and fear) that in the not-too-dis-
tant future we will be able to reengineer our bodies,
to quickly identify and fix whatever goes wrong in
most disease states with minimal collateral dam-
age, and even to grow new biological replacement
parts that can be as good as, or better than, the
(young) original. Whenever that will happen, it will
ultimately be due to the development of high-qual-
ity tools for analyzing, designing, modeling, and
simulating cells and tissues. The components that
deal with signaling networks will likely be among
the most important, but also most difficult, to
develop. ®
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